Table of Contents 目录
.mk
file 18.3. .mk
文件.hash
file 18.4. .hash
文件SNNfoo
start scriptSNNfoo
启动脚本List of Examples 例子清单
Buildroot ${BR2_VERSION%%-git*} manual generated on 2024-05-07
08:28:19 UTC from git revision 0155095c55
Buildroot ${BR2_VERSION%%-git*} 手册生成于 2024-05-07 08:28:19 UTC,来自 git 修订版本 0155095c55
The Buildroot manual is written by the Buildroot developers.
It is licensed under the GNU General Public License, version 2. Refer to the
COPYING
file in the Buildroot sources for the full text of this license.
Buildroot 手册是由 Buildroot 开发人员编写的。它在 GNU 通用公共许可证第 2 版下许可。有关此许可证的完整文本,请参阅 Buildroot 源代码中的 COPYING 文件。
Copyright © The Buildroot developers <buildroot@buildroot.org>
版权所有 © Buildroot 开发人员 <buildroot@buildroot.org>
Buildroot is a tool that simplifies and automates the process of
building a complete Linux system for an embedded system, using
cross-compilation.
Buildroot 是一个工具,它简化和自动化了为嵌入式系统构建完整 Linux 系统的过程,使用交叉编译。
In order to achieve this, Buildroot is able to generate a
cross-compilation toolchain, a root filesystem, a Linux kernel image
and a bootloader for your target. Buildroot can be used for any
combination of these options, independently (you can for example use
an existing cross-compilation toolchain, and build only your root
filesystem with Buildroot).
为
了实现这一目标,Buildroot 能够为您的目标生成一个交叉编译工具链、一个根文件系统、一个 Linux
内核映像和一个引导加载程序。Buildroot 可以独立地用于这些选项的任何组合(例如,您可以使用现有的交叉编译工具链,并且仅使用
Buildroot 构建您的根文件系统)。
Buildroot is useful mainly for people working with embedded systems.
Embedded systems often use processors that are not the regular x86
processors everyone is used to having in his PC. They can be PowerPC
processors, MIPS processors, ARM processors, etc.
Buildroot 主要用于与嵌入式系统工作的人。嵌入式系统通常使用不是每个人都习惯在个人电脑上拥有的常规 x86 处理器。它们可以是 PowerPC 处理器、MIPS 处理器、ARM 处理器等。
Buildroot supports numerous processors and their variants; it also
comes with default configurations for several boards available
off-the-shelf. Besides this, a number of third-party projects are based on,
or develop their BSP [1] or
SDK [2] on top of Buildroot.
Buildroot 支持众多处理器及其变种;它还配备了几个现成的板卡的默认配置。此外,许多第三方项目都基于 Buildroot,或在 Buildroot 之上开发他们的 BSP [1] 或 SDK [2] 。
Buildroot is designed to run on Linux systems.
Buildroot 设计用于在 Linux 系统上运行。
While Buildroot itself will build most host packages it needs for the
compilation, certain standard Linux utilities are expected to be
already installed on the host system. Below you will find an overview of
the mandatory and optional packages (note that package names may vary
between distributions).
虽然 Buildroot 本身将构建大多数编译所需的主机软件包,但是预期某些标准的 Linux 实用工具已经安装在主机系统上。下面您将找到强制和可选软件包的概述(请注意软件包名称在不同发行版之间可能会有所不同)。
Build tools: 构建工具:
which
sed
make
(version 3.81 or any later)
make
(版本 3.81 或更高版本)binutils
build-essential
(only for Debian based systems)
build-essential
(仅适用于基于 Debian 的系统)diffutils
gcc
(version 4.8 or any later)
gcc
(版本 4.8 或更高版本)g++
(version 4.8 or any later)
g++
(版本 4.8 或更高版本)bash
patch
gzip
bzip2
perl
(version 5.8.7 or any later)
perl
(版本 5.8.7 或更高版本)tar
cpio
unzip
rsync
file
(must be in /usr/bin/file
)
file
(必须在 /usr/bin/file
内)bc
findutils
Source fetching tools: 源获取工具:
wget
Recommended dependencies:
推荐依赖项:
Some features or utilities in Buildroot, like the legal-info, or the
graph generation tools, have additional dependencies. Although they
are not mandatory for a simple build, they are still highly recommended:
Buildroot 中的一些功能或实用工具,如 legal-info 或图形生成工具,具有额外的依赖关系。虽然它们对于简单构建来说并非强制性的,但仍然强烈建议:
python
(version 2.7 or any later)
python
(版本 2.7 或更新版本)
Configuration interface dependencies:
配置界面依赖项:
For these libraries, you need to install both runtime and development
data, which in many distributions are packaged separately. The
development packages typically have a -dev or -devel suffix.
对于这些库,您需要安装运行时和开发数据,这在许多发行版中通常是分开打包的。开发包通常具有-dev 或-devel 后缀。
ncurses5
to use the menuconfig interface
ncurses5
使用 menuconfig 界面qt5
to use the xconfig interface
qt5
使用 xconfig 界面glib2
, gtk2
and glade2
to use the gconfig interface
glib2
, gtk2
和 glade2
使用 gconfig 接口Source fetching tools: 源码获取工具:
In the official tree, most of the package sources are retrieved using
wget
from ftp, http or https locations. A few packages are only
available through a version control system. Moreover, Buildroot is
capable of downloading sources via other tools, like git
or scp
(refer to Chapter 20, Download infrastructure for more details). If you enable
packages using any of these methods, you will need to install the
corresponding tool on the host system:
在官方树中,大多数软件包源码是通过 ftp、http 或 https 位置使用 wget
检索的。少数软件包只能通过版本控制系统获得。此外,Buildroot 能够通过其他工具(如 git
或 scp
)下载源码(详细信息请参阅第 20 章“下载基础设施”)。如果您使用这些方法启用软件包,则需要在主机系统上安装相应的工具:
bazaar
cvs
git
mercurial
scp
sftp
subversion
Java-related packages, if the Java Classpath needs to be built for
the target system:
如果目标系统需要构建 Java Classpath,则与 Java 相关的软件包:
javac
compiler
javac
编译器jar
tool
jar
工具
Documentation generation tools:
文档生成工具:
asciidoc
, version 8.6.3 or higher
asciidoc
,版本 8.6.3 或更高版本w3m
python
with the argparse
module (automatically present in 2.7+ and 3.2+)
python
与 argparse
模块(自动包含在 2.7+和 3.2+中)dblatex
(required for the pdf manual only)
dblatex
(仅适用于 PDF 手册)Graph generation tools: 图形生成工具:
graphviz
to use graph-depends and <pkg>-graph-dependsgraphviz
用于使用图形依赖项和 -图形依赖项
python-matplotlib
to use graph-build python-matplotlib
使用图形构建
Buildroot releases are made every 3 months, in February, May, August and
November. Release numbers are in the format YYYY.MM, so for example
2013.02, 2014.08.
Buildroot 每 3 个月发布一次版本,分别在 2 月、5 月、8 月和 11 月。版本号的格式为 YYYY.MM,例如 2013.02,2014.08。
Release tarballs are available at http://buildroot.org/downloads/.
发行版 tar 包可在 http://buildroot.org/downloads/获取。
For your convenience, a Vagrantfile is
available in support/misc/Vagrantfile
in the Buildroot source tree
to quickly set up a virtual machine with the needed dependencies to
get started.
为方便起见,在 Buildroot 源代码树中提供了一个 Vagrantfile,可快速设置一个带有所需依赖项的虚拟机,以便快速开始。
If you want to setup an isolated buildroot environment on Linux or Mac
Os X, paste this line onto your terminal:
如果您想在 Linux 或 Mac Os X 上设置一个独立的 buildroot 环境,请将此行粘贴到您的终端上:
curl -O https://buildroot.org/downloads/Vagrantfile; vagrant up
If you are on Windows, paste this into your powershell:
如果您使用的是 Windows,请将此内容粘贴到您的 PowerShell 中:
(new-object System.Net.WebClient).DownloadFile( "https://buildroot.org/downloads/Vagrantfile","Vagrantfile"); vagrant up
If you want to follow development, you can use the daily snapshots or
make a clone of the Git repository. Refer to the
Download page of the Buildroot website
for more details.
如果您想要跟踪开发进展,您可以使用每日快照或克隆 Git 存储库。有关更多详细信息,请参阅 Buildroot 网站的下载页面。
Important: you can and should build everything as a normal user. There
is no need to be root to configure and use Buildroot. By running all
commands as a regular user, you protect your system against packages
behaving badly during compilation and installation.
重要提示:您可以并且应该以普通用户的身份构建所有内容。在配置和使用 Buildroot 时,无需使用 root 权限。通过以普通用户身份运行所有命令,可以保护系统免受在编译和安装过程中表现不佳的软件包的影响。
The first step when using Buildroot is to create a configuration.
Buildroot has a nice configuration tool similar to the one you can
find in the Linux kernel or in
BusyBox.
使用 Buildroot 的第一步是创建配置。Buildroot 有一个很好的配置工具,类似于 Linux 内核或 BusyBox 中的配置工具。
From the buildroot directory, run
从 buildroot 目录中运行
$ make menuconfig
for the original curses-based configurator, or
用于原始基于 curses 的配置器,或
$ make nconfig
for the new curses-based configurator, or
用于新的基于 curses 的配置器,或
$ make xconfig
for the Qt-based configurator, or
用于基于 Qt 的配置器,或
$ make gconfig
for the GTK-based configurator.
用于基于 GTK 的配置器。
All of these "make" commands will need to build a configuration
utility (including the interface), so you may need to install
"development" packages for relevant libraries used by the
configuration utilities. Refer to Chapter 2, System requirements for more details,
specifically the optional requirements
to get the dependencies of your favorite interface.
所有这些“make”命令都需要构建一个配置实用程序(包括界面),因此您可能需要安装与配置实用程序使用的相关库的“开发”软件包。有关更多详细信息,请参阅第 2 章“系统要求”,特别是有关获取您喜爱的界面的依赖项的可选要求。
For each menu entry in the configuration tool, you can find associated
help that describes the purpose of the entry. Refer to Chapter 6, Buildroot configuration
for details on some specific configuration aspects.
对于配置工具中的每个菜单条目,您可以找到描述条目目的的相关帮助。有关一些特定配置方面的详细信息,请参阅第 6 章“Buildroot 配置”。
Once everything is configured, the configuration tool generates a
.config
file that contains the entire configuration. This file will be
read by the top-level Makefile.
一旦一切都配置好了,配置工具将生成一个包含整个配置的 .config
文件。此文件将由顶层 Makefile 读取。
To start the build process, simply run:
要开始构建过程,只需运行:
$ make
By default, Buildroot does not support top-level parallel build, so
running make -jN
is not necessary. There is however experimental
support for top-level parallel build, see
Section 8.12, “Top-level parallel build”.
默认情况下,Buildroot 不支持顶层并行构建,因此运行 make -jN
是不必要的。但是,顶层并行构建有实验性支持,请参见第 8.12 节“顶层并行构建”。
The make
command will generally perform the following steps:
make
命令通常会执行以下步骤:
Buildroot output is stored in a single directory, output/
.
This directory contains several subdirectories:
Buildroot 输出存储在一个单独的目录中, output/
。该目录包含几个子目录:
images/
where all the images (kernel image, bootloader and root
filesystem images) are stored. These are the files you need to put
on your target system.
images/
,其中存储了所有的镜像(内核镜像、引导加载程序和根文件系统镜像)。这些是您需要放在目标系统上的文件。build/
where all the components are built (this includes tools
needed by Buildroot on the host and packages compiled for the
target). This directory contains one subdirectory for each of these
components.
build/
,其中构建了所有的组件(这包括 Buildroot 在主机上需要的工具和为目标编译的软件包)。该目录包含每个组件的一个子目录。host/
contains both the tools built for the host, and the sysroot
of the target toolchain. The former is an installation of tools
compiled for the host that are needed for the proper execution of
Buildroot, including the cross-compilation toolchain. The latter
is a hierarchy similar to a root filesystem hierarchy. It contains
the headers and libraries of all user-space packages that provide
and install libraries used by other packages. However, this
directory is not intended to be the root filesystem for the target:
it contains a lot of development files, unstripped binaries and
libraries that make it far too big for an embedded system. These
development files are used to compile libraries and applications for
the target that depend on other libraries.
host/
包含为主机构建的工具和目标工具链的 sysroot。前者是为主机编译的工具的安装,这些工具是 Buildroot
正确执行所需的,包括交叉编译工具链。后者是类似于根文件系统层次结构的层次结构。它包含所有用户空间软件包的头文件和库,这些软件包提供并安装其他软件
包使用的库。但是,此目录不打算成为目标的根文件系统:它包含大量开发文件、未剥离的二进制文件和库,使其对于嵌入式系统来说太大。这些开发文件用于为依
赖其他库的目标编译库和应用程序。staging/
is a symlink to the target toolchain sysroot inside
host/
, which exists for backwards compatibility.
staging/
是 host/
中目标工具链 sysroot 的符号链接,用于向后兼容。target/
which contains almost the complete root filesystem for
the target: everything needed is present except the device files in
/dev/
(Buildroot can’t create them because Buildroot doesn’t run
as root and doesn’t want to run as root). Also, it doesn’t have the correct
permissions (e.g. setuid for the busybox binary). Therefore, this directory
should not be used on your target. Instead, you should use one of
the images built in the images/
directory. If you need an
extracted image of the root filesystem for booting over NFS, then
use the tarball image generated in images/
and extract it as
root. Compared to staging/
, target/
contains only the files and
libraries needed to run the selected target applications: the
development files (headers, etc.) are not present, the binaries are
stripped.
target/
包含了目标设备几乎完整的根文件系统:除了 /dev/
中的设备文件之外,一切所需的文件都已经准备就绪(Buildroot 无法创建这些文件,因为 Buildroot 不以 root
用户身份运行,也不希望以 root 用户身份运行)。此外,它也没有正确的权限(例如,busybox 二进制文件的
setuid)。因此,这个目录不应该在您的目标设备上使用。相反,您应该使用在 images/
目录中构建的其中一个镜像。如果您需要一个用于通过 NFS 引导的根文件系统的提取镜像,那么请使用在 images/
中生成的 tarball 镜像,并以 root 用户身份进行提取。与 staging/
相比, target/
只包含了运行所选目标应用程序所需的文件和库:开发文件(头文件等)不包含在内,二进制文件已经剥离。These commands, make menuconfig|nconfig|gconfig|xconfig
and make
, are the
basic ones that allow to easily and quickly generate images fitting
your needs, with all the features and applications you enabled.
这些命令, make menuconfig|nconfig|gconfig|xconfig
和 make
,是基本命令,可以轻松快速地生成符合您需求的图像,具有您启用的所有功能和应用程序。
More details about the "make" command usage are given in
Section 8.1, “make tips”.
有关“make”命令用法的更多详细信息,请参阅第 8.1 节“make 技巧”。
Like any open source project, Buildroot has different ways to share
information in its community and outside.
与任何开源项目一样,Buildroot 在其社区内部和外部分享信息的方式各不相同。
Each of those ways may interest you if you are looking for some help,
want to understand Buildroot or contribute to the project.
如果您正在寻求帮助,想了解 Buildroot 或为项目做出贡献,那么这些方式可能会引起您的兴趣。
Buildroot has a mailing list for discussion and development. It is the
main method of interaction for Buildroot users and developers.
Buildroot 有一个用于讨论和开发的邮件列表。这是 Buildroot 用户和开发人员进行互动的主要方法。
Only subscribers to the Buildroot mailing list are allowed to post to
this list. You can subscribe via the
mailing list info
page.
只有订阅了 Buildroot 邮件列表的订阅者才可以在此列表上发布。您可以通过邮件列表信息页面订阅。
Mails that are sent to the mailing list are also available in the
mailing list archives, available through
Mailman or at
lore.kernel.org.
发送到邮件列表的邮件也可以在邮件列表归档中找到,可通过 Mailman 或 lore.kernel.org 访问。
The Buildroot IRC channel #buildroot is
hosted on OFTC. It is a useful place to
ask quick questions or discuss on certain topics.
Buildroot IRC 频道#buildroot 托管在 OFTC 上。这是一个提问快速问题或讨论特定主题的有用场所。
When asking for help on IRC, share relevant logs or pieces of code
using a code sharing website, such as https://paste.ack.tf/.
在 IRC 上寻求帮助时,请使用代码共享网站(例如 https://paste.ack.tf/)分享相关日志或代码片段。
Note that for certain questions, posting to the mailing list may be
better as it will reach more people, both developers and users.
请注意,对于某些问题,将问题发布到邮件列表可能更好,因为这样可以让更多的人看到,包括开发人员和用户。
Patchwork is a web-based patch tracking system designed to facilitate
the contribution and management of contributions to an open-source
project. Patches that have been sent to a mailing list are 'caught' by
the system, and appear on a web page. Any comments posted that
reference the patch are appended to the patch page too. For more
information on Patchwork see
http://jk.ozlabs.org/projects/patchwork/.
补
丁工作是一个基于网络的补丁跟踪系统,旨在促进对开源项目的贡献和管理。已发送到邮件列表的补丁会被系统“捕捉”,并显示在网页上。任何涉及该补丁的发布
的评论也会附加到补丁页面上。有关补丁工作的更多信息,请参阅 http://jk.ozlabs.org/projects/patchwork/。
Buildroot’s Patchwork website is mainly for use by Buildroot’s
maintainer to ensure patches aren’t missed. It is also used by Buildroot
patch reviewers (see also Section 22.3.1, “Applying Patches from Patchwork”).
However, since the website exposes patches and their corresponding
review comments in a clean and concise web interface, it can be useful
for all Buildroot developers.
Buildroot
的 Patchwork 网站主要供 Buildroot 的维护者使用,以确保不会错过补丁。它还被 Buildroot
补丁审阅者使用(另请参见第 22.3.1 节“从 Patchwork
应用补丁”)。然而,由于该网站以清晰简洁的网络界面展示补丁及其相应的审阅评论,因此对所有 Buildroot 开发人员都有用。
The Buildroot patch management interface is available at
https://patchwork.ozlabs.org/project/buildroot/list/.
Buildroot 补丁管理界面可在 https://patchwork.ozlabs.org/project/buildroot/list/找到。
All the configuration options in make *config
have a help text
providing details about the option.
make *config
中的所有配置选项都有帮助文本,提供有关该选项的详细信息。
The make *config
commands also offer a search tool. Read the help
message in the different frontend menus to know how to use it:
make *config
命令还提供搜索工具。阅读不同前端菜单中的帮助消息,了解如何使用它:
/
;
/
键调用搜索工具;Ctrl
+ f
.
Ctrl
+ f
可调用搜索工具。The result of the search shows the help message of the matching items.
In menuconfig, numbers in the left column provide a shortcut to the
corresponding entry. Just type this number to directly jump to the
entry, or to the containing menu in case the entry is not selectable due
to a missing dependency.
搜索结果显示匹配项目的帮助消息。在 menuconfig 中,左列的数字为对应条目提供了快捷方式。只需键入该数字即可直接跳转到该条目,或者跳转到包含菜单(如果由于缺少依赖项而无法选择该条目)。
Although the menu structure and the help text of the entries should be
sufficiently self-explanatory, a number of topics require additional
explanation that cannot easily be covered in the help text and are
therefore covered in the following sections.
尽管菜单结构和条目的帮助文本应该足够自解释,但有一些主题需要额外解释,这些内容不容易在帮助文本中涵盖,因此在以下部分进行了介绍。
A compilation toolchain is the set of tools that allows you to compile
code for your system. It consists of a compiler (in our case, gcc
),
binary utils like assembler and linker (in our case, binutils
) and a
C standard library (for example
GNU Libc,
uClibc-ng).
编译工具链是一组工具,允许您为您的系统编译代码。它包括编译器(在我们的情况下, gcc
),二进制工具如汇编器和链接器(在我们的情况下, binutils
)和 C 标准库(例如 GNU Libc,uClibc-ng)。
The system installed on your development station certainly already has
a compilation toolchain that you can use to compile an application
that runs on your system. If you’re using a PC, your compilation
toolchain runs on an x86 processor and generates code for an x86
processor. Under most Linux systems, the compilation toolchain uses
the GNU libc (glibc) as the C standard library. This compilation
toolchain is called the "host compilation toolchain". The machine on
which it is running, and on which you’re working, is called the "host
system" [3].
安
装在您的开发站点上的系统肯定已经有一个编译工具链,您可以使用它来编译在您的系统上运行的应用程序。如果您使用的是个人电脑,您的编译工具链在 x86
处理器上运行,并为 x86 处理器生成代码。在大多数 Linux 系统下,编译工具链使用 GNU libc(glibc)作为 C
标准库。这个编译工具链被称为“主机编译工具链”。它正在运行的机器,以及您正在工作的机器,被称为“主机系统” [3] 。
The compilation toolchain is provided by your distribution, and
Buildroot has nothing to do with it (other than using it to build a
cross-compilation toolchain and other tools that are run on the
development host).
编译工具链由您的发行版提供,Buildroot 与之无关(除了使用它来构建交叉编译工具链和在开发主机上运行的其他工具)。
As said above, the compilation toolchain that comes with your system
runs on and generates code for the processor in your host system. As
your embedded system has a different processor, you need a
cross-compilation toolchain - a compilation toolchain that runs on
your host system but generates code for your target system (and
target processor). For example, if your host system uses x86 and your
target system uses ARM, the regular compilation toolchain on your host
runs on x86 and generates code for x86, while the cross-compilation
toolchain runs on x86 and generates code for ARM.
如
上所述,系统自带的编译工具链在您的主机系统上运行,并为主机系统中的处理器生成代码。由于您的嵌入式系统使用不同的处理器,您需要一个交叉编译工具链 -
一个在您的主机系统上运行但为目标系统(和目标处理器)生成代码的编译工具链。例如,如果您的主机系统使用 x86,而目标系统使用
ARM,那么主机上的常规编译工具链在 x86 上运行并为 x86 生成代码,而交叉编译工具链在 x86 上运行并为 ARM 生成代码。
Buildroot provides two solutions for the cross-compilation toolchain:
Buildroot 为交叉编译工具链提供了两种解决方案:
Buildroot toolchain
in
the configuration interface.
Buildroot toolchain
。External toolchain
in
the configuration interface.
External toolchain
。The choice between these two solutions is done using the Toolchain
Type
option in the Toolchain
menu. Once one solution has been
chosen, a number of configuration options appear, they are detailed in
the following sections.
在 Toolchain
菜单中使用 Toolchain
Type
选项来选择这两个解决方案之间的选择。一旦选择了一个解决方案,将出现一些配置选项,这些选项在以下部分中详细说明。
The internal toolchain backend is the backend where Buildroot builds
by itself a cross-compilation toolchain, before building the userspace
applications and libraries for your target embedded system.
内部工具链后端是 Buildroot 在构建目标嵌入式系统的用户空间应用程序和库之前,通过自身构建交叉编译工具链的后端。
This backend supports several C libraries:
uClibc-ng,
glibc and
musl.
该后端支持几种 C 库:uClibc-ng、glibc 和 musl。
Once you have selected this backend, a number of options appear. The
most important ones allow to:
一旦选择了这个后端,将会出现许多选项。其中最重要的选项允许:
.h
files from the kernel), which
define the interface between userspace and the kernel (system
calls, data structures, etc.). Since this interface is backward
compatible, the version of the Linux kernel headers used to build
your toolchain do not need to match exactly the version of the
Linux kernel you intend to run on your embedded system. They only
need to have a version equal or older to the version of the Linux
kernel you intend to run. If you use kernel headers that are more
recent than the Linux kernel you run on your embedded system, then
the C library might be using interfaces that are not provided by
your Linux kernel.
.h
文件),这些文件定义了用户空间和内核之间的接口(系统调用、数据结构等)。由于这个接口是向后兼容的,用于构建工具链的 Linux
内核头文件的版本不需要完全匹配您打算在嵌入式系统上运行的 Linux 内核的版本。它们只需要具有与您打算运行的 Linux
内核版本相等或更旧的版本。如果您使用的内核头文件比您在嵌入式系统上运行的 Linux 内核更新,那么 C 库可能会使用您的 Linux
内核未提供的接口。make uclibc-menuconfig
. Note however that
all packages in Buildroot are tested against the default uClibc
configuration bundled in Buildroot: if you deviate from this
configuration by removing features from uClibc, some packages may no
longer build.
make uclibc-menuconfig
进一步调整 uClibc 配置。但请注意,Buildroot 中的所有软件包都针对 Buildroot 捆绑的默认 uClibc 配置进行测试:如果您通过从 uClibc 中删除功能而偏离此配置,则某些软件包可能无法构建。It is worth noting that whenever one of those options is modified,
then the entire toolchain and system must be rebuilt. See
Section 8.2, “Understanding when a full rebuild is necessary”.
值得注意的是,每当修改这些选项之一时,整个工具链和系统都必须重新构建。请参阅第 8.2 节“了解何时需要进行完全重建”。
Advantages of this backend:
此后端的优势:
Drawbacks of this backend:
这个后端的缺点:
make clean
, which
takes time. If you’re trying to reduce your build time, consider
using the External toolchain backend.
make clean
时,需要重新构建工具链,这需要时间。如果您想要减少构建时间,请考虑使用外部工具链后端。The external toolchain backend allows to use existing pre-built
cross-compilation toolchains. Buildroot knows about a number of
well-known cross-compilation toolchains (from
Linaro for ARM,
Sourcery
CodeBench for ARM, x86-64, PowerPC, and MIPS, and is capable of
downloading them automatically, or it can be pointed to a custom
toolchain, either available for download or installed locally.
外
部工具链后端允许使用现有的预构建交叉编译工具链。Buildroot 知道一些知名的交叉编译工具链(来自 Linaro 的
ARM,Sourcery CodeBench 的 ARM,x86-64,PowerPC 和
MIPS),并且能够自动下载它们,或者可以指向自定义工具链,无论是可供下载还是本地安装。
Then, you have three solutions to use an external toolchain:
然后,您有三种解决方案可以使用外部工具链:
Toolchain
from the available ones. This is
definitely the easiest solution.
Toolchain
through the available
ones, unselect Download toolchain automatically
, and fill the
Toolchain path
text entry with the path to your cross-compiling
toolchain.
Toolchain
中选择工具链配置文件,取消选择 Download toolchain automatically
,并在 Toolchain path
文本框中填入交叉编译工具链的路径。Custom toolchain
solution in the
Toolchain
list. You need to fill the Toolchain path
, Toolchain
prefix
and External toolchain C library
options. Then, you have
to tell Buildroot what your external toolchain supports. If your
external toolchain uses the glibc library, you only have to tell
whether your toolchain supports C++ or not and whether it has
built-in RPC support. If your external toolchain uses the uClibc
library, then you have to tell Buildroot if it supports RPC,
wide-char, locale, program invocation, threads and C++.
At the beginning of the execution, Buildroot will tell you if
the selected options do not match the toolchain configuration.
Toolchain
列表中选择 Custom toolchain
解决方案。您需要填写 Toolchain path
、 Toolchain
prefix
和 External toolchain C library
选项。然后,您需要告诉 Buildroot 您的外部工具链支持什么。如果您的外部工具链使用 glibc 库,您只需告诉工具链是否支持
C++,以及是否具有内置的 RPC 支持。如果您的外部工具链使用 uClibc 库,那么您需要告诉 Buildroot 它是否支持
RPC、宽字符、区域设置、程序调用、线程和 C++。在执行开始时,Buildroot 会告诉您所选选项是否与工具链配置不匹配。Our external toolchain support has been tested with toolchains from
CodeSourcery and Linaro, toolchains generated by
crosstool-NG, and toolchains generated by
Buildroot itself. In general, all toolchains that support the
sysroot feature should work. If not, do not hesitate to contact the
developers.
我
们的外部工具链支持已经与来自 CodeSourcery 和 Linaro 的工具链,由 crosstool-NG 生成的工具链以及由
Buildroot 本身生成的工具链进行了测试。一般来说,所有支持 sysroot
功能的工具链都应该可以工作。如果不能,请不要犹豫与开发人员联系。
We do not support toolchains or SDK generated by OpenEmbedded or
Yocto, because these toolchains are not pure toolchains (i.e. just the
compiler, binutils, the C and C++ libraries). Instead these toolchains
come with a very large set of pre-compiled libraries and
programs. Therefore, Buildroot cannot import the sysroot of the
toolchain, as it would contain hundreds of megabytes of pre-compiled
libraries that are normally built by Buildroot.
我
们不支持由 OpenEmbedded 或 Yocto 生成的工具链或
SDK,因为这些工具链不是纯粹的工具链(即仅包括编译器、binutils、C 和
C++库)。相反,这些工具链带有非常庞大的预编译库和程序集。因此,Buildroot 无法导入工具链的
sysroot,因为它将包含数百兆字节的通常由 Buildroot 构建的预编译库。
We also do not support using the distribution toolchain (i.e. the
gcc/binutils/C library installed by your distribution) as the
toolchain to build software for the target. This is because your
distribution toolchain is not a "pure" toolchain (i.e. only with the
C/C++ library), so we cannot import it properly into the Buildroot
build environment. So even if you are building a system for a x86 or
x86_64 target, you have to generate a cross-compilation toolchain with
Buildroot or crosstool-NG.
我
们也不支持使用发行版工具链(即由您的发行版安装的 gcc/binutils/C
库)作为构建目标软件的工具链。这是因为您的发行版工具链不是一个“纯粹”的工具链(即只有 C/C++库),所以我们无法将其正确地导入到
Buildroot 构建环境中。因此,即使您正在为 x86 或 x86_64 目标构建系统,您也必须使用 Buildroot 或
crosstool-NG 生成交叉编译工具链。
If you want to generate a custom toolchain for your project, that can
be used as an external toolchain in Buildroot, our recommendation is
to build it either with Buildroot itself (see
Section 6.1.3, “Build an external toolchain with Buildroot”) or with
crosstool-NG.
如果您想为您的项目生成自定义工具链,以便在 Buildroot 中用作外部工具链,我们建议使用 Buildroot 本身构建(请参阅第 6.1.3 节“使用 Buildroot 构建外部工具链”)或使用 crosstool-NG 构建。
Advantages of this backend:
此后端的优势:
Drawbacks of this backend:
该后端的缺点:
The Buildroot internal toolchain option can be used to create an
external toolchain. Here are a series of steps to build an internal
toolchain and package it up for reuse by Buildroot itself (or other
projects).
可以使用 Buildroot 内部工具链选项来创建外部工具链。以下是构建内部工具链并将其打包以供 Buildroot 本身(或其他项目)重复使用的一系列步骤。
Create a new Buildroot configuration, with the following details:
创建一个新的 Buildroot 配置,包括以下细节:
Then, we can trigger the build, and also ask Buildroot to generate a
SDK. This will conveniently generate for us a tarball which contains
our toolchain:
然后,我们可以触发构建,并要求 Buildroot 生成一个 SDK。这将方便地为我们生成一个包含我们的工具链的 tarball:
make sdk
This produces the SDK tarball in $(O)/images
, with a name similar to
arm-buildroot-linux-uclibcgnueabi_sdk-buildroot.tar.gz
. Save this
tarball, as it is now the toolchain that you can re-use as an external
toolchain in other Buildroot projects.
这将在 $(O)/images
中生成 SDK tarball,名称类似于 arm-buildroot-linux-uclibcgnueabi_sdk-buildroot.tar.gz
。保存这个 tarball,因为现在它是您可以在其他 Buildroot 项目中作为外部工具链重复使用的工具链。
In those other Buildroot projects, in the Toolchain menu:
在其他 Buildroot 项目中,在工具链菜单中:
file:///path/to/your/sdk/tarball.tar.gz
file:///path/to/your/sdk/tarball.tar.gz
When using an external toolchain, Buildroot generates a wrapper program,
that transparently passes the appropriate options (according to the
configuration) to the external toolchain programs. In case you need to
debug this wrapper to check exactly what arguments are passed, you can
set the environment variable BR2_DEBUG_WRAPPER
to either one of:
当使用外部工具链时,Buildroot 会生成一个包装程序,该程序会根据配置透明地将适当的选项传递给外部工具链程序。如果您需要调试此包装程序以检查传递的确切参数,您可以将环境变量 BR2_DEBUG_WRAPPER
设置为以下之一:
0
, empty or not set: no debug
0
,为空或未设置:无调试1
: trace all arguments on a single line
1
:在单行上跟踪所有参数2
: trace one argument per line
2
:每行跟踪一个参数On a Linux system, the /dev
directory contains special files, called
device files, that allow userspace applications to access the
hardware devices managed by the Linux kernel. Without these device
files, your userspace applications would not be able to use the
hardware devices, even if they are properly recognized by the Linux
kernel.
在 Linux 系统上, /dev
目录包含称为设备文件的特殊文件,允许用户空间应用程序访问由 Linux 内核管理的硬件设备。如果没有这些设备文件,即使 Linux 内核正确识别了硬件设备,您的用户空间应用程序也无法使用这些硬件设备。
Under System configuration
, /dev management
, Buildroot offers four
different solutions to handle the /dev
directory :
在 System configuration
, /dev management
下,Buildroot 提供了四种不同的解决方案来处理 /dev
目录:
system/device_table_dev.txt
in the
Buildroot source code. This file is processed when Buildroot
generates the final root filesystem image, and the device files
are therefore not visible in the output/target
directory. The
BR2_ROOTFS_STATIC_DEVICE_TABLE
option allows to change the
default device table used by Buildroot, or to add an additional
device table, so that additional device files are created by
Buildroot during the build. So, if you use this method, and a
device file is missing in your system, you can for example create
a board/<yourcompany>/<yourproject>/device_table_dev.txt
file
that contains the description of your additional device files,
and then you can set BR2_ROOTFS_STATIC_DEVICE_TABLE
to
system/device_table_dev.txt
board/<yourcompany>/<yourproject>/device_table_dev.txt
. For more
details about the format of the device table file, see
Chapter 25, Makedev syntax documentation.
system/device_table_dev.txt
中。当 Buildroot 生成最终的根文件系统映像时,将处理此文件,因此设备文件在 output/target
目录中不可见。 BR2_ROOTFS_STATIC_DEVICE_TABLE
选项允许更改 Buildroot 使用的默认设备表,或添加额外的设备表,以便 Buildroot 在构建过程中创建额外的设备文件。因此,如果您使用此方法,并且系统中缺少设备文件,您可以例如创建一个包含您额外设备文件描述的 board/<yourcompany>/<yourproject>/device_table_dev.txt
文件,然后您可以将 BR2_ROOTFS_STATIC_DEVICE_TABLE
设置为 system/device_table_dev.txt
board/<yourcompany>/<yourproject>/device_table_dev.txt
。有关设备表文件格式的更多详细信息,请参阅第 25 章《Makedev 语法文档》。/dev
, this virtual
filesystem will automatically make device files appear and
disappear as hardware devices are added and removed from the
system. This filesystem is not persistent across reboots: it is
filled dynamically by the kernel. Using devtmpfs requires the
following kernel configuration options to be enabled:
CONFIG_DEVTMPFS
and CONFIG_DEVTMPFS_MOUNT
. When Buildroot is in
charge of building the Linux kernel for your embedded device, it
makes sure that those two options are enabled. However, if you
build your Linux kernel outside of Buildroot, then it is your
responsibility to enable those two options (if you fail to do so,
your Buildroot system will not boot).
/dev
中挂载时,这个虚拟文件系统会自动使设备文件随着硬件设备被添加到系统中而出现和消失。这个文件系统在重新启动后不是持久的:它由内核动态填充。使用 devtmpfs 需要启用以下内核配置选项: CONFIG_DEVTMPFS
和 CONFIG_DEVTMPFS_MOUNT
。当 Buildroot 负责为您的嵌入式设备构建 Linux 内核时,它会确保这两个选项已启用。但是,如果您在 Buildroot 之外构建 Linux 内核,则您有责任启用这两个选项(如果未能这样做,您的 Buildroot 系统将无法启动)。CONFIG_DEVTMPFS
and
CONFIG_DEVTMPFS_MOUNT
enabled in the kernel configuration still
apply), but adds the mdev
userspace utility on top of it. mdev
is a program part of BusyBox that the kernel will call every time a
device is added or removed. Thanks to the /etc/mdev.conf
configuration file, mdev
can be configured to for example, set
specific permissions or ownership on a device file, call a script
or application whenever a device appears or disappear,
etc. Basically, it allows userspace to react on device addition
and removal events. mdev
can for example be used to automatically
load kernel modules when devices appear on the system. mdev
is
also important if you have devices that require a firmware, as it
will be responsible for pushing the firmware contents to the
kernel. mdev
is a lightweight implementation (with fewer
features) of udev
. For more details about mdev
and the syntax
of its configuration file, see
http://git.busybox.net/busybox/tree/docs/mdev.txt.
CONFIG_DEVTMPFS
和 CONFIG_DEVTMPFS_MOUNT
),但在其之上添加了 mdev
用户空间实用程序。 mdev
是 BusyBox 的一部分程序,内核会在每次添加或移除设备时调用它。通过 /etc/mdev.conf
配置文件, mdev
可以被配置为例如,在设备文件上设置特定权限或所有权,每当设备出现或消失时调用脚本或应用程序等。基本上,它允许用户空间对设备添加和移除事件做出反应。例如, mdev
可以用于在系统上出现设备时自动加载内核模块。如果您有需要固件的设备, mdev
也很重要,因为它将负责将固件内容推送到内核。 mdev
是 udev
的轻量级实现(功能较少)。有关 mdev
和其配置文件语法的更多详细信息,请参阅 http://git.busybox.net/busybox/tree/docs/mdev.txt。eudev
userspace daemon on top of it. eudev
is a daemon that runs in the background, and gets called by the
kernel when a device gets added or removed from the system. It is a
more heavyweight solution than mdev
, but provides higher
flexibility. eudev
is a standalone version of udev
, the
original userspace daemon used in most desktop Linux distributions,
which is now part of Systemd. For more details, see
http://en.wikipedia.org/wiki/Udev.
eudev
用户空间守护程序。 eudev
是一个在后台运行的守护程序,当系统中添加或移除设备时,会被内核调用。这是一个比 mdev
更加庞大的解决方案,但提供了更高的灵活性。 eudev
是 udev
的独立版本, udev
是大多数桌面 Linux 发行版中使用的原始用户空间守护程序,现在已成为 Systemd 的一部分。更多详情请参阅 http://en.wikipedia.org/wiki/Udev。The Buildroot developers recommendation is to start with the Dynamic
using devtmpfs only solution, until you have the need for userspace
to be notified when devices are added/removed, or if firmwares are
needed, in which case Dynamic using devtmpfs + mdev is usually a
good solution.
Buildroot 开发人员建议首先使用仅使用 devtmpfs 的动态解决方案,直到需要在添加/移除设备时通知用户空间,或者需要固件时,此时通常使用动态使用 devtmpfs + mdev 是一个不错的解决方案。
Note that if systemd
is chosen as init system, /dev management will
be performed by the udev
program provided by systemd
.
请注意,如果选择 systemd
作为初始化系统,则/dev 管理将由 systemd
提供的 udev
程序执行。
The init program is the first userspace program started by the
kernel (it carries the PID number 1), and is responsible for starting
the userspace services and programs (for example: web server,
graphical applications, other network servers, etc.).
初始化程序是内核启动的第一个用户空间程序(它携带 PID 编号 1),负责启动用户空间服务和程序(例如:Web 服务器、图形应用程序、其他网络服务器等)。
Buildroot allows to use three different types of init systems, which
can be chosen from System configuration
, Init system
:
Buildroot 允许使用三种不同类型的 init 系统,可以从 System configuration
, Init system
中选择:
init
program, which is sufficient
for most embedded systems. Enabling the BR2_INIT_BUSYBOX
will
ensure BusyBox will build and install its init
program. This is
the default solution in Buildroot. The BusyBox init
program will
read the /etc/inittab
file at boot to know what to do. The syntax
of this file can be found in
http://git.busybox.net/busybox/tree/examples/inittab (note that
BusyBox inittab
syntax is special: do not use a random inittab
documentation from the Internet to learn about BusyBox
inittab
). The default inittab
in Buildroot is stored in
system/skeleton/etc/inittab
. Apart from mounting a few important
filesystems, the main job the default inittab does is to start the
/etc/init.d/rcS
shell script, and start a getty
program (which
provides a login prompt).
init
程序的实现,这对大多数嵌入式系统来说已经足够了。启用 BR2_INIT_BUSYBOX
将确保 BusyBox 构建并安装其 init
程序。这是 Buildroot 中的默认解决方案。BusyBox 的 init
程序将在启动时读取 /etc/inittab
文件以了解要执行的操作。此文件的语法可以在 http://git.busybox.net/busybox/tree/examples/inittab 中找到(请注意,BusyBox 的 inittab
语法很特殊:不要使用来自互联网的随机 inittab
文档来了解 BusyBox 的 inittab
)。Buildroot 中的默认 inittab
存储在 system/skeleton/etc/inittab
中。除了挂载几个重要的文件系统外,默认的 inittab 的主要工作是启动 /etc/init.d/rcS
shell 脚本,并启动一个 getty
程序(提供登录提示)。package/sysvinit
. This was the solution used in most desktop
Linux distributions, until they switched to more recent
alternatives such as Upstart or Systemd. sysvinit
also works with
an inittab
file (which has a slightly different syntax than the
one from BusyBox). The default inittab
installed with this init
solution is located in package/sysvinit/inittab
.
package/sysvinit
。这是大多数桌面 Linux 发行版使用的解决方案,直到它们转向更近期的替代方案,如 Upstart 或 Systemd。 sysvinit
还可以使用 inittab
文件(其语法与 BusyBox 的语法略有不同)。使用此 init 解决方案安装的默认 inittab
位于 package/sysvinit/inittab
。systemd
is the new generation
init system for Linux. It does far more than traditional init
programs: aggressive parallelization capabilities, uses socket and
D-Bus activation for starting services, offers on-demand starting
of daemons, keeps track of processes using Linux control groups,
supports snapshotting and restoring of the system state,
etc. systemd
will be useful on relatively complex embedded
systems, for example the ones requiring D-Bus and services
communicating between each other. It is worth noting that systemd
brings a fairly big number of large dependencies: dbus
, udev
and more. For more details about systemd
, see
http://www.freedesktop.org/wiki/Software/systemd.
systemd
是 Linux 的新一代 init 系统。它比传统的 init 程序做得更多:具有激进的并行化能力,使用套接字和 D-Bus 激活启动服务,提供按需启动守护程序,使用 Linux 控制组跟踪进程,支持系统状态的快照和恢复等。 systemd
将在相对复杂的嵌入式系统上很有用,例如需要 D-Bus 和服务之间通信的系统。值得注意的是 systemd
带来了相当多的大型依赖项: dbus
, udev
等。有关 systemd
的更多详细信息,请参阅 http://www.freedesktop.org/wiki/Software/systemd。The solution recommended by Buildroot developers is to use the
BusyBox init as it is sufficient for most embedded
systems. systemd can be used for more complex situations.
Buildroot 开发人员推荐的解决方案是使用 BusyBox init,因为对于大多数嵌入式系统来说已经足够了。systemd 可用于更复杂的情况。
[3] This terminology differs from what is used by GNU
configure, where the host is the machine on which the application will
run (which is usually the same as target)
[3] 这个术语与 GNU 配置中使用的术语不同,在那里主机是应用程序将运行的机器(通常与目标相同)。
Before attempting to modify any of the components below, make sure you
have already configured Buildroot itself, and have enabled the
corresponding package.
在尝试修改以下任何组件之前,请确保您已经配置了 Buildroot 本身,并已启用相应的软件包。
If you already have a BusyBox configuration file, you can directly
specify this file in the Buildroot configuration, using
BR2_PACKAGE_BUSYBOX_CONFIG
. Otherwise, Buildroot will start from a
default BusyBox configuration file.
如果您已经有一个 BusyBox 配置文件,您可以直接在 Buildroot 配置中指定该文件,使用 BR2_PACKAGE_BUSYBOX_CONFIG
。否则,Buildroot 将从默认的 BusyBox 配置文件开始。
To make subsequent changes to the configuration, use make
busybox-menuconfig
to open the BusyBox configuration editor.
要对配置进行后续更改,请使用 make
busybox-menuconfig
打开 BusyBox 配置编辑器。
It is also possible to specify a BusyBox configuration file through an
environment variable, although this is not recommended. Refer to
Section 8.6, “Environment variables” for more details.
也可以通过环境变量指定 BusyBox 配置文件,尽管这不被推荐。有关更多详细信息,请参阅第 8.6 节“环境变量”。
BR2_UCLIBC_CONFIG
. The command to make subsequent changes is make
uclibc-menuconfig
.BR2_UCLIBC_CONFIG
。进行后续更改的命令为 make
uclibc-menuconfig
。If you already have a kernel configuration file, you can directly
specify this file in the Buildroot configuration, using
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG
.
如果您已经有内核配置文件,可以直接在 Buildroot 配置中指定该文件,使用 BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG
。
If you do not yet have a kernel configuration file, you can either start
by specifying a defconfig in the Buildroot configuration, using
BR2_LINUX_KERNEL_USE_DEFCONFIG
, or start by creating an empty file and
specifying it as custom configuration file, using
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG
.
如果您还没有内核配置文件,可以通过在 Buildroot 配置中指定一个 defconfig(使用 BR2_LINUX_KERNEL_USE_DEFCONFIG
)开始,或者通过创建一个空文件并将其指定为自定义配置文件(使用 BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG
)开始。
To make subsequent changes to the configuration, use make
linux-menuconfig
to open the Linux configuration editor.
要对配置进行后续更改,请使用 make
linux-menuconfig
打开 Linux 配置编辑器。
BR2_TARGET_BAREBOX_USE_CUSTOM_CONFIG
and
BR2_TARGET_BAREBOX_USE_DEFCONFIG
. To open the configuration editor,
use make barebox-menuconfig
.BR2_TARGET_BAREBOX_USE_CUSTOM_CONFIG
和 BR2_TARGET_BAREBOX_USE_DEFCONFIG
。要打开配置编辑器,请使用 make barebox-menuconfig
。BR2_TARGET_UBOOT_USE_CUSTOM_CONFIG
and
BR2_TARGET_UBOOT_USE_DEFCONFIG
. To open the configuration editor,
use make uboot-menuconfig
.BR2_TARGET_UBOOT_USE_CUSTOM_CONFIG
和 BR2_TARGET_UBOOT_USE_DEFCONFIG
。要打开配置编辑器,请使用 make uboot-menuconfig
。This is a collection of tips that help you make the most of Buildroot.
这是一些帮助您充分利用 Buildroot 的技巧的集合。
Display all commands executed by make:
显示由 make 执行的所有命令:
$ make V=1 <target>
Display the list of boards with a defconfig:
显示具有 defconfig 的板的列表:
$ make list-defconfigs
Display all available targets:
显示所有可用的目标:
$ make help
Not all targets are always available,
some settings in the .config
file may hide some targets:
并非所有目标始终可用, .config
文件中的一些设置可能会隐藏一些目标:
busybox-menuconfig
only works when busybox
is enabled;
busybox
时, busybox-menuconfig
才起作用;linux-menuconfig
and linux-savedefconfig
only work when
linux
is enabled;
linux
时, linux-menuconfig
和 linux-savedefconfig
才起作用;uclibc-menuconfig
is only available when the uClibc C library is
selected in the internal toolchain backend;
uclibc-menuconfig
可用;barebox-menuconfig
and barebox-savedefconfig
only work when the
barebox
bootloader is enabled.
barebox
bootloader 启用时,只有 barebox-menuconfig
和 barebox-savedefconfig
可用。uboot-menuconfig
and uboot-savedefconfig
only work when the
U-Boot
bootloader is enabled and the uboot
build system is set
to Kconfig
.
U-Boot
bootloader 启用且 uboot
构建系统设置为 Kconfig
时,只有 uboot-menuconfig
和 uboot-savedefconfig
可用。Cleaning: Explicit cleaning is required when any of the architecture or toolchain
configuration options are changed.
清理:当更改任何架构或工具链配置选项时,需要显式清理。
To delete all build products (including build directories, host, staging
and target trees, the images and the toolchain):
要删除所有构建产品(包括构建目录、主机、暂存和目标树、映像和工具链):
$ make clean
Generating the manual: The present manual sources are located in the docs/manual directory.
To generate the manual:
生成手册:当前手册源位于 docs/manual 目录中。要生成手册:
$ make manual-clean $ make manual
The manual outputs will be generated in output/docs/manual.
手册输出将生成在 output/docs/manual 中。
Notes 注意事项
Resetting Buildroot for a new target: To delete all build products as well as the configuration:
为新目标重置 Buildroot:要删除所有构建产品以及配置:
$ make distclean
Notes. If ccache
is enabled, running make clean
or distclean
does
not empty the compiler cache used by Buildroot. To delete it, refer
to Section 8.13.3, “Using ccache
in Buildroot”.
注意事项。如果启用了 ccache
,运行 make clean
或 distclean
不会清空 Buildroot 使用的编译器缓存。要删除它,请参阅第 8.13.3 节“在 Buildroot 中使用 ccache
”。
Dumping the internal make variables: One can dump the variables known to make, along with their values:
转储内部制作变量:可以转储已知于制作的变量及其值:
$ make -s printvars VARS='VARIABLE1 VARIABLE2' VARIABLE1=value_of_variable VARIABLE2=value_of_variable
It is possible to tweak the output using some variables:
可以使用一些变量来调整输出:
VARS
will limit the listing to variables which names match the
specified make-patterns - this must be set else nothing is printed
VARS
将限制列出与指定制作模式匹配的变量名称 - 必须设置,否则不会打印任何内容QUOTED_VARS
, if set to YES
, will single-quote the value
QUOTED_VARS
,如果设置为 YES
,将对值进行单引号处理RAW_VARS
, if set to YES
, will print the unexpanded value
RAW_VARS
,如果设置为 YES
,将打印未展开的值For example: 例如:
$ make -s printvars VARS=BUSYBOX_%DEPENDENCIES BUSYBOX_DEPENDENCIES=skeleton toolchain BUSYBOX_FINAL_ALL_DEPENDENCIES=skeleton toolchain BUSYBOX_FINAL_DEPENDENCIES=skeleton toolchain BUSYBOX_FINAL_PATCH_DEPENDENCIES= BUSYBOX_RDEPENDENCIES=ncurses util-linux
$ make -s printvars VARS=BUSYBOX_%DEPENDENCIES QUOTED_VARS=YES BUSYBOX_DEPENDENCIES='skeleton toolchain' BUSYBOX_FINAL_ALL_DEPENDENCIES='skeleton toolchain' BUSYBOX_FINAL_DEPENDENCIES='skeleton toolchain' BUSYBOX_FINAL_PATCH_DEPENDENCIES='' BUSYBOX_RDEPENDENCIES='ncurses util-linux'
$ make -s printvars VARS=BUSYBOX_%DEPENDENCIES RAW_VARS=YES BUSYBOX_DEPENDENCIES=skeleton toolchain BUSYBOX_FINAL_ALL_DEPENDENCIES=$(sort $(BUSYBOX_FINAL_DEPENDENCIES) $(BUSYBOX_FINAL_PATCH_DEPENDENCIES)) BUSYBOX_FINAL_DEPENDENCIES=$(sort $(BUSYBOX_DEPENDENCIES)) BUSYBOX_FINAL_PATCH_DEPENDENCIES=$(sort $(BUSYBOX_PATCH_DEPENDENCIES)) BUSYBOX_RDEPENDENCIES=ncurses util-linux
The output of quoted variables can be reused in shell scripts, for example:
引用变量的输出可以在 shell 脚本中重复使用,例如:
$ eval $(make -s printvars VARS=BUSYBOX_DEPENDENCIES QUOTED_VARS=YES) $ echo $BUSYBOX_DEPENDENCIES skeleton toolchain
Buildroot does not attempt to detect what parts of the system should
be rebuilt when the system configuration is changed through make
menuconfig
, make xconfig
or one of the other configuration
tools. In some cases, Buildroot should rebuild the entire system, in
some cases, only a specific subset of packages. But detecting this in
a completely reliable manner is very difficult, and therefore the
Buildroot developers have decided to simply not attempt to do this.
当系统配置通过 make
menuconfig
, make xconfig
或其他配置工具更改时,Buildroot 不会尝试检测应重新构建系统的哪些部分。在某些情况下,Buildroot
应重新构建整个系统,而在某些情况下,只需重新构建特定的软件包子集。但以完全可靠的方式检测这一点非常困难,因此 Buildroot
开发人员决定简单地不尝试这样做。
Instead, it is the responsibility of the user to know when a full
rebuild is necessary. As a hint, here are a few rules of thumb that
can help you understand how to work with Buildroot:
相反,用户有责任知道何时需要进行完全重建。以下是一些经验法则的提示,可以帮助您了解如何使用 Buildroot:
ctorrent
package, but without openssl
. Your system works, but you realize
you would like to have SSL support in ctorrent
, so you enable the
openssl
package in Buildroot configuration and restart the
build. Buildroot will detect that openssl
should be built and
will be build it, but it will not detect that ctorrent
should be
rebuilt to benefit from openssl
to add OpenSSL support. You will
either have to do a full rebuild, or rebuild ctorrent
itself.
ctorrent
软件包,但不包含 openssl
软件包。你的系统可以运行,但你意识到你想在 ctorrent
中添加 SSL 支持,因此你在 Buildroot 配置中启用了 openssl
软件包并重新启动构建。Buildroot 将检测到应该构建 openssl
并对其进行构建,但它不会检测到应该重建 ctorrent
以从 openssl
中获益以添加 OpenSSL 支持。你要么进行完全重建,要么重建 ctorrent
本身。make
invocation
will take the changes into account.
make
调用将考虑到更改。FOO_DEPENDENCIES
is rebuilt or removed,
the package foo
is not automatically rebuilt. For example, if a
package bar
is listed in FOO_DEPENDENCIES
with FOO_DEPENDENCIES
= bar
and the configuration of the bar
package is changed, the
configuration change would not result in a rebuild of package foo
automatically. In this scenario, you may need to either rebuild any
packages in your build which reference bar
in their DEPENDENCIES
,
or perform a full rebuild to ensure any bar
dependent packages are
up to date.
FOO_DEPENDENCIES
中列出的软件包被重新构建或移除时,软件包 foo
不会自动重新构建。例如,如果软件包 bar
在 FOO_DEPENDENCIES
中与 FOO_DEPENDENCIES
= bar
一起列出,并且 bar
软件包的配置发生更改,则配置更改不会自动导致软件包 foo
重新构建。在这种情况下,您可能需要重新构建任何在构建中引用 bar
的软件包,或者执行完整的重新构建以确保任何 bar
依赖软件包是最新的。Generally speaking, when you’re facing a build error and you’re unsure
of the potential consequences of the configuration changes you’ve
made, do a full rebuild. If you get the same build error, then you are
sure that the error is not related to partial rebuilds of packages,
and if this error occurs with packages from the official Buildroot, do
not hesitate to report the problem! As your experience with Buildroot
progresses, you will progressively learn when a full rebuild is really
necessary, and you will save more and more time.
一
般来说,当您面临构建错误并且不确定您所做配置更改的潜在后果时,请进行完整重建。如果您收到相同的构建错误,则可以确定该错误与软件包的部分重建无关,
如果此错误发生在官方 Buildroot 软件包中,请毫不犹豫地报告问题!随着您对 Buildroot
的经验不断积累,您将逐渐学会何时真正需要进行完整重建,并且将节省越来越多的时间。
For reference, a full rebuild is achieved by running:
供参考,通过运行以下命令来实现完整重建:
$ make clean all
One of the most common questions asked by Buildroot users is how to
rebuild a given package or how to remove a package without rebuilding
everything from scratch.
Buildroot 用户经常问的一个最常见的问题是如何重新构建给定的软件包或如何在不从头开始重新构建的情况下删除软件包。
Removing a package is unsupported by Buildroot without
rebuilding from scratch. This is because Buildroot doesn’t keep track
of which package installs what files in the output/staging
and
output/target
directories, or which package would be compiled differently
depending on the availability of another package.
在不从头开始重新构建的情况下,Buildroot 不支持删除软件包。这是因为 Buildroot 不跟踪哪个软件包在 output/staging
和 output/target
目录中安装了哪些文件,或者哪个软件包的编译方式会因为另一个软件包的可用性而有所不同。
The easiest way to rebuild a single package from scratch is to remove
its build directory in output/build
. Buildroot will then re-extract,
re-configure, re-compile and re-install this package from scratch. You
can ask buildroot to do this with the make <package>-dirclean
command.
从头开始重新构建单个软件包的最简单方法是删除其在 output/build
中的构建目录。然后 Buildroot 将重新提取、重新配置、重新编译和重新安装此软件包。您可以使用 make <package>-dirclean
命令要求 buildroot 这样做。
On the other hand, if you only want to restart the build process of a
package from its compilation step, you can run make <package>-rebuild
. It
will restart the compilation and installation of the package, but not from
scratch: it basically re-executes make
and make install
inside the package,
so it will only rebuild files that changed.
另一方面,如果您只想从编译步骤重新启动软件包的构建过程,可以运行 make <package>-rebuild
。它将重新启动软件包的编译和安装过程,但不是从头开始:它基本上重新执行软件包内的 make
和 make install
,因此只会重新构建已更改的文件。
If you want to restart the build process of a package from its configuration
step, you can run make <package>-reconfigure
. It will restart the
configuration, compilation and installation of the package.
如果您想从配置步骤重新启动软件包的构建过程,可以运行 make <package>-reconfigure
。它将重新启动软件包的配置、编译和安装。
While <package>-rebuild
implies <package>-reinstall
and
<package>-reconfigure
implies <package>-rebuild
, these targets as well
as <package>
only act on the said package, and do not trigger re-creating
the root filesystem image. If re-creating the root filesystem in necessary,
one should in addition run make
or make all
.
虽然 <package>-rebuild
意味着 <package>-reinstall
, <package>-reconfigure
意味着 <package>-rebuild
,这些目标以及 <package>
仅对所述软件包起作用,并不会触发重新创建根文件系统映像。如果需要重新创建根文件系统,则还应运行 make
或 make all
。
Internally, Buildroot creates so-called stamp files to keep track of
which build steps have been completed for each package. They are
stored in the package build directory,
output/build/<package>-<version>/
and are named
.stamp_<step-name>
. The commands detailed above simply manipulate
these stamp files to force Buildroot to restart a specific set of
steps of a package build process.
在内部,Buildroot 创建所谓的戳记文件,以跟踪每个软件包的构建步骤已完成的情况。它们存储在软件包构建目录中, output/build/<package>-<version>/
,并命名为 .stamp_<step-name>
。上面详细介绍的命令只是简单地操作这些戳记文件,以强制 Buildroot 重新启动软件包构建过程的特定步骤。
Further details about package special make targets are explained in
Section 8.13.5, “Package-specific make targets”.
有关软件包特殊的 make 目标的更多细节,请参阅第 8.13.5 节,“软件包特定的 make 目标”。
If you intend to do an offline build and just want to download
all sources that you previously selected in the configurator
(menuconfig, nconfig, xconfig or gconfig), then issue:
如果您打算进行离线构建,并且只想下载您先前在配置器(menuconfig、nconfig、xconfig 或 gconfig)中选择的所有源代码,请执行以下操作:
$ make source
You can now disconnect or copy the content of your dl
directory to the build-host.
您现在可以断开连接或复制您的 dl
目录内容到构建主机。
As default, everything built by Buildroot is stored in the directory
output
in the Buildroot tree.
默认情况下,Buildroot 构建的所有内容都存储在 Buildroot 树中的目录 output
中。
Buildroot also supports building out of tree with a syntax similar to
the Linux kernel. To use it, add O=<directory>
to the make command
line:
Buildroot 还支持类似于 Linux 内核的外部构建。要使用它,请将 O=<directory>
添加到 make 命令行中:
$ make O=/tmp/build menuconfig
Or:
$ cd /tmp/build; make O=$PWD -C path/to/buildroot menuconfig
All the output files will be located under /tmp/build
. If the O
path does not exist, Buildroot will create it.
所有输出文件将位于 /tmp/build
下。如果 O
路径不存在,Buildroot 将创建它。
Note: the O
path can be either an absolute or a relative path, but if it’s
passed as a relative path, it is important to note that it is interpreted
relative to the main Buildroot source directory, not the current working
directory.
注意: O
路径可以是绝对路径,也可以是相对路径,但如果作为相对路径传递,重要的是要注意,它是相对于主 Buildroot 源目录解释的,而不是当前工作目录。
When using out-of-tree builds, the Buildroot .config
and temporary
files are also stored in the output directory. This means that you can
safely run multiple builds in parallel using the same source tree as
long as they use unique output directories.
在使用 out-of-tree 构建时,Buildroot 的 .config
和临时文件也存储在输出目录中。这意味着只要它们使用唯一的输出目录,您可以安全地并行运行多个构建,使用相同的源树。
For ease of use, Buildroot generates a Makefile wrapper in the output
directory - so after the first run, you no longer need to pass O=<…>
and -C <…>
, simply run (in the output directory):
为了方便使用,Buildroot 在输出目录中生成一个 Makefile 包装器 - 因此在第一次运行后,您不再需要传递 O=<…>
和 -C <…>
,只需在(输出目录中)运行:
$ make <target>
Buildroot also honors some environment variables, when they are passed
to make
or set in the environment:
当传递给 make
或在环境中设置时,Buildroot 也会尊重一些环境变量:
HOSTCXX
, the host C++ compiler to use
HOSTCXX
,要使用的主机 C++ 编译器HOSTCC
, the host C compiler to use
HOSTCC
,要使用的主机 C 编译器UCLIBC_CONFIG_FILE=<path/to/.config>
, path to
the uClibc configuration file, used to compile uClibc, if an
internal toolchain is being built.
Note that the uClibc configuration file can also be set from the
configuration interface, so through the Buildroot .config
file; this
is the recommended way of setting it.
UCLIBC_CONFIG_FILE=<path/to/.config>
,用于编译 uClibc 的 uClibc 配置文件的路径,如果正在构建内部工具链。请注意,也可以从配置界面设置 uClibc 配置文件,因此通过 Buildroot .config
文件;这是建议的设置方式。BUSYBOX_CONFIG_FILE=<path/to/.config>
, path to
the BusyBox configuration file.
Note that the BusyBox configuration file can also be set from the
configuration interface, so through the Buildroot .config
file; this
is the recommended way of setting it.
BUSYBOX_CONFIG_FILE=<path/to/.config>
,BusyBox 配置文件的路径。请注意,也可以从配置界面设置 BusyBox 配置文件,因此通过 Buildroot .config
文件;这是建议的设置方式。BR2_CCACHE_DIR
to override the directory where
Buildroot stores the cached files when using ccache.
BR2_CCACHE_DIR
用于覆盖 Buildroot 在使用 ccache 时存储缓存文件的目录。BR2_DL_DIR
to override the directory in which
Buildroot stores/retrieves downloaded files.
Note that the Buildroot download directory can also be set from the
configuration interface, so through the Buildroot .config
file. See
Section 8.13.4, “Location of downloaded packages” for more details on how you can set the download
directory.
BR2_DL_DIR
用于覆盖 Buildroot 存储/检索下载文件的目录。请注意,Buildroot 下载目录也可以从配置界面设置,或通过 Buildroot .config
文件设置。有关如何设置下载目录的更多详细信息,请参阅第 8.13.4 节“下载软件包的位置”。BR2_GRAPH_ALT
, if set and non-empty, to use an alternate color-scheme in
build-time graphs
BR2_GRAPH_ALT
,如果设置且非空,则在构建时图表中使用替代配色方案。BR2_GRAPH_OUT
to set the filetype of generated graphs, either pdf
(the
default), or png
.
BR2_GRAPH_OUT
设置生成图形的文件类型,可以是 pdf
(默认值),也可以是 png
。BR2_GRAPH_DEPS_OPTS
to pass extra options to the dependency graph; see
Section 8.9, “Graphing the dependencies between packages” for the accepted options
BR2_GRAPH_DEPS_OPTS
传递额外选项给依赖图;请参阅第 8.9 节“绘制软件包之间的依赖关系图”以查看可接受的选项。BR2_GRAPH_DOT_OPTS
is passed verbatim as options to the dot
utility to
draw the dependency graph.
BR2_GRAPH_DOT_OPTS
按原样传递给 dot
实用程序作为绘制依赖图的选项。BR2_GRAPH_SIZE_OPTS
to pass extra options to the size graph; see
Section 8.11, “Graphing the filesystem size contribution of packages” for the acepted options
BR2_GRAPH_SIZE_OPTS
传递额外选项给大小图表;请参阅第 8.11 节,“图表化软件包的文件系统大小贡献”以获取接受的选项An example that uses config files located in the toplevel directory and
in your $HOME:
一个示例,使用位于顶层目录和您的 $HOME 中的配置文件:
$ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config
If you want to use a compiler other than the default gcc
or g
++ for building helper-binaries on your host, then do
如果您想在主机上构建辅助二进制文件时使用除默认的 gcc
或 g
++ 之外的编译器,则执行
$ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc-4.3-HEAD
Filesystem images can get pretty big, depending on the filesystem you choose,
the number of packages, whether you provisioned free space… Yet, some
locations in the filesystems images may just be empty (e.g. a long run of
zeroes); such a file is called a sparse file.
文件系统映像可能会变得非常庞大,这取决于您选择的文件系统、软件包的数量、是否预留了空闲空间等因素... 然而,在文件系统映像中的某些位置可能是空的(例如,一长串零);这样的文件称为稀疏文件。
Most tools can handle sparse files efficiently, and will only store or write
those parts of a sparse file that are not empty.
大多数工具可以高效处理稀疏文件,并且只会存储或写入那些不为空的稀疏文件部分。
For example: 例如:
tar
accepts the -S
option to tell it to only store non-zero blocks
of sparse files:
tar
接受 -S
选项,告诉它仅存储稀疏文件的非零块:
tar cf archive.tar -S [files…]
will efficiently store sparse files
in a tarball
tar cf archive.tar -S [files…]
将有效地存储 tarball 中的稀疏文件tar xf archive.tar -S
will efficiently store sparse files extracted
from a tarball
tar xf archive.tar -S
将有效地存储从 tarball 中提取的稀疏文件
cp
accepts the --sparse=WHEN
option (WHEN
is one of auto
,
never
or always
):
cp
接受 --sparse=WHEN
选项 ( WHEN
是 auto
, never
或 always
之一) :
cp --sparse=always source.file dest.file
will make dest.file
a
sparse file if source.file
has long runs of zeroes
source.file
有长时间的零运行, cp --sparse=always source.file dest.file
将使 dest.file
成为稀疏文件Other tools may have similar options. Please consult their respective man
pages.
其他工具可能具有类似的选项。请参阅各自的 man 手册。
You can use sparse files if you need to store the filesystem images (e.g.
to transfer from one machine to another), or if you need to send them (e.g.
to the Q&A team).
如果您需要存储文件系统映像(例如,从一台机器传输到另一台机器),或者需要发送它们(例如,发送给问答团队),则可以使用稀疏文件。
Note however that flashing a filesystem image to a device while using the
sparse mode of dd
may result in a broken filesystem (e.g. the block bitmap
of an ext2 filesystem may be corrupted; or, if you have sparse files in
your filesystem, those parts may not be all-zeroes when read back). You
should only use sparse files when handling files on the build machine, not
when transferring them to an actual device that will be used on the target.
请注意,当使用 dd
的稀疏模式将文件系统映像刷写到设备时,可能会导致文件系统损坏(例如,ext2
文件系统的块位图可能会损坏;或者,如果文件系统中有稀疏文件,则在读取时这些部分可能不全为零)。只有在处理构建机器上的文件时才应使用稀疏文件,而不
是在将它们传输到将在目标设备上使用的实际设备时。
Buildroot can produce a JSON blurb that describes the set of enabled
packages in the current configuration, together with their
dependencies, licenses and other metadata. This JSON blurb is produced
by using the show-info
make target:
Buildroot 可以生成一个 JSON 摘要,描述当前配置中启用的软件包集合,以及它们的依赖关系、许可证和其他元数据。通过使用 show-info
make 目标生成此 JSON 摘要:
make show-info
Buildroot can also produce details about packages as HTML and JSON
output using the pkg-stats
make target. Amongst other things, these
details include whether known CVEs (security vulnerabilities) affect
the packages in your current configuration. It also shows if there is
a newer upstream version for those packages.
Buildroot 还可以使用 pkg-stats
make 目标生成有关软件包的 HTML 和 JSON 输出的详细信息。除其他事项外,这些详细信息还包括已知 CVE(安全漏洞)是否影响当前配置中的软件包。它还显示这些软件包是否有更新的上游版本。
make pkg-stats
One of Buildroot’s jobs is to know the dependencies between packages,
and make sure they are built in the right order. These dependencies
can sometimes be quite complicated, and for a given system, it is
often not easy to understand why such or such package was brought into
the build by Buildroot.
Buildroot 的工作之一是了解软件包之间的依赖关系,并确保它们按正确顺序构建。这些依赖关系有时可能相当复杂,对于给定的系统,通常不容易理解为什么 Buildroot 会将某个软件包引入构建过程中。
In order to help understanding the dependencies, and therefore better
understand what is the role of the different components in your
embedded Linux system, Buildroot is capable of generating dependency
graphs.
为了帮助理解依赖关系,从而更好地了解嵌入式 Linux 系统中不同组件的作用,Buildroot 能够生成依赖图。
To generate a dependency graph of the full system you have compiled,
simply run:
要生成您编译的完整系统的依赖图,只需运行:
make graph-depends
You will find the generated graph in
output/graphs/graph-depends.pdf
.
你将在 output/graphs/graph-depends.pdf
中找到生成的图形。
If your system is quite large, the dependency graph may be too complex
and difficult to read. It is therefore possible to generate the
dependency graph just for a given package:
如果您的系统非常庞大,则依赖图可能过于复杂且难以阅读。因此,可以仅为给定的软件包生成依赖图:
make <pkg>-graph-depends
You will find the generated graph in
output/graph/<pkg>-graph-depends.pdf
.
你将在 output/graph/<pkg>-graph-depends.pdf
中找到生成的图形。
Note that the dependency graphs are generated using the dot
tool
from the Graphviz project, which you must have installed on your
system to use this feature. In most distributions, it is available as
the graphviz
package.
请注意,依赖图是使用 Graphviz 项目中的 dot
工具生成的,您必须在系统上安装此工具才能使用此功能。在大多数发行版中,它作为 graphviz
软件包提供。
By default, the dependency graphs are generated in the PDF
format. However, by passing the BR2_GRAPH_OUT
environment variable, you
can switch to other output formats, such as PNG, PostScript or
SVG. All formats supported by the -T
option of the dot
tool are
supported.
默认情况下,依赖图以 PDF 格式生成。但是,通过传递 BR2_GRAPH_OUT
环境变量,您可以切换到其他输出格式,如 PNG、PostScript 或 SVG。所有 dot
工具的 -T
选项支持的格式都受支持。
BR2_GRAPH_OUT=svg make graph-depends
The graph-depends
behaviour can be controlled by setting options in the
BR2_GRAPH_DEPS_OPTS
environment variable. The accepted options are:
graph-depends
的行为可以通过在 BR2_GRAPH_DEPS_OPTS
环境变量中设置选项来控制。接受的选项包括:
--depth N
, -d N
, to limit the dependency depth to N
levels. The
default, 0
, means no limit.
--depth N
, -d N
,将依赖深度限制为 N
级。默认值 0
表示无限制。--stop-on PKG
, -s PKG
, to stop the graph on the package PKG
.
PKG
can be an actual package name, a glob, the keyword virtual
(to stop on virtual packages), or the keyword host (to stop on
host packages). The package is still present on the graph, but its
dependencies are not.
--stop-on PKG
, -s PKG
,停止图形在包 PKG
上。 PKG
可以是实际包名称、通配符、关键字 virtual(停在虚拟包上)或关键字 host(停在主机包上)。包仍然存在于图中,但其依赖关系不在图中。--exclude PKG
, -x PKG
, like --stop-on
, but also omits PKG
from
the graph.
--exclude PKG
, -x PKG
,类似于 --stop-on
,但也从图中省略 PKG
。--transitive
, --no-transitive
, to draw (or not) the transitive
dependencies. The default is to not draw transitive dependencies.
--transitive
, --no-transitive
,绘制(或不绘制)传递依赖项。默认情况下不绘制传递依赖项。--colors R,T,H
, the comma-separated list of colors to draw the
root package (R
), the target packages (T
) and the host packages
(H
). Defaults to: lightblue,grey,gainsboro
--colors R,T,H
,逗号分隔的颜色列表,用于绘制根包( R
),目标包( T
)和主机包( H
)。默认为: lightblue,grey,gainsboro
BR2_GRAPH_DEPS_OPTS='-d 3 --no-transitive --colors=red,green,blue' make graph-depends
When the build of a system takes a long time, it is sometimes useful
to be able to understand which packages are the longest to build, to
see if anything can be done to speed up the build. In order to help
such build time analysis, Buildroot collects the build time of each
step of each package, and allows to generate graphs from this data.
当系统构建时间较长时,有时了解构建时间最长的软件包是很有用的,以查看是否可以采取措施加快构建速度。为了帮助进行构建时间分析,Buildroot 收集每个软件包每个步骤的构建时间,并允许从这些数据生成图表。
To generate the build time graph after a build, run:
要在构建后生成构建时间图表,请运行:
make graph-build
This will generate a set of files in output/graphs
:
这将在 output/graphs
中生成一组文件:
build.hist-build.pdf
, a histogram of the build time for each
package, ordered in the build order.
build.hist-build.pdf
,每个软件包构建时间的直方图,按构建顺序排序。build.hist-duration.pdf
, a histogram of the build time for each
package, ordered by duration (longest first)
build.hist-duration.pdf
,每个软件包构建时间的直方图,按持续时间排序(最长的在前)。build.hist-name.pdf
, a histogram of the build time for each
package, order by package name.
build.hist-name.pdf
,每个软件包构建时间的直方图,按软件包名称排序。build.pie-packages.pdf
, a pie chart of the build time per package
build.pie-packages.pdf
,每个软件包构建时间的饼图build.pie-steps.pdf
, a pie chart of the global time spent in each
step of the packages build process.
build.pie-steps.pdf
,显示软件包构建过程中每个步骤中全局耗时的饼图This graph-build
target requires the Python Matplotlib and Numpy
libraries to be installed (python-matplotlib
and python-numpy
on
most distributions), and also the argparse
module if you’re using a
Python version older than 2.7 (python-argparse
on most
distributions).
此 graph-build
目标需要安装 Python Matplotlib 和 Numpy 库(在大多数发行版上为 python-matplotlib
和 python-numpy
),如果您使用的是早于 2.7 版本的 Python,则还需要 argparse
模块(在大多数发行版上为 python-argparse
)。
By default, the output format for the graph is PDF, but a different
format can be selected using the BR2_GRAPH_OUT
environment variable. The
only other format supported is PNG:
默认情况下,图形的输出格式为 PDF,但可以使用 BR2_GRAPH_OUT
环境变量选择不同的格式。唯一支持的其他格式是 PNG:
BR2_GRAPH_OUT=png make graph-build
When your target system grows, it is sometimes useful to understand
how much each Buildroot package is contributing to the overall root
filesystem size. To help with such an analysis, Buildroot collects
data about files installed by each package and using this data,
generates a graph and CSV files detailing the size contribution of
the different packages.
当目标系统增长时,了解每个 Buildroot 软件包对整体根文件系统大小的贡献是有用的。为了帮助进行这种分析,Buildroot 收集有关每个软件包安装的文件的数据,并使用这些数据生成关于不同软件包大小贡献的图形和 CSV 文件。
To generate these data after a build, run:
在构建后生成这些数据,请运行:
make graph-size
This will generate: 这将生成:
output/graphs/graph-size.pdf
, a pie chart of the contribution of
each package to the overall root filesystem size
output/graphs/graph-size.pdf
,显示每个软件包对总根文件系统大小的贡献的饼图output/graphs/package-size-stats.csv
, a CSV file giving the size
contribution of each package to the overall root filesystem size
output/graphs/package-size-stats.csv
,一个 CSV 文件,显示每个软件包对整体根文件系统大小的大小贡献output/graphs/file-size-stats.csv
, a CSV file giving the size
contribution of each installed file to the package it belongs, and
to the overall filesystem size.
output/graphs/file-size-stats.csv
,一个 CSV 文件,显示每个已安装文件对其所属软件包以及整体文件系统大小的大小贡献This graph-size
target requires the Python Matplotlib library to be
installed (python-matplotlib
on most distributions), and also the
argparse
module if you’re using a Python version older than 2.7
(python-argparse
on most distributions).
此 graph-size
目标需要安装 Python Matplotlib 库(在大多数发行版上为 python-matplotlib
),如果您使用的是早于 2.7 版本的 Python,则还需要安装 argparse
模块(在大多数发行版上为 python-argparse
)。
Just like for the duration graph, a BR2_GRAPH_OUT
environment variable
is supported to adjust the output file format. See Section 8.9, “Graphing the dependencies between packages”
for details about this environment variable.
就像持续图一样,支持一个 BR2_GRAPH_OUT
环境变量来调整输出文件格式。有关此环境变量的详细信息,请参见第 8.9 节“绘制软件包之间的依赖关系”。
Additionally, one may set the environment variable BR2_GRAPH_SIZE_OPTS
to further control the generated graph. Accepted options are:
另外,可以设置环境变量 BR2_GRAPH_SIZE_OPTS
来进一步控制生成的图。接受的选项包括:
--size-limit X
, -l X
, will group all packages which individual
contribution is below X
percent, to a single entry labelled Others
in the graph. By default, X=0.01
, which means packages each
contributing less than 1% are grouped under Others. Accepted values
are in the range [0.0..1.0]
.
--size-limit X
, -l X
,将所有个别贡献低于 X
%的软件包分组到一个名为“其他”的条目中。默认情况下, X=0.01
,这意味着每个贡献少于 1%的软件包都分组在其他下。接受的值范围为 [0.0..1.0]
。--iec
, --binary
, --si
, --decimal
, to use IEC (binary, powers
of 1024) or SI (decimal, powers of 1000; the default) prefixes.
--iec
, --binary
, --si
, --decimal
,使用 IEC(二进制,1024 的幂)或 SI(十进制,1000 的幂;默认)前缀。--biggest-first
, to sort packages in decreasing size order, rather
than in increasing size order.
--biggest-first
,按照大小递减的顺序对软件包进行排序,而不是按照大小递增的顺序。Note. The collected filesystem size data is only meaningful after a complete
clean rebuild. Be sure to run make clean all
before using make
graph-size
.
注意。只有在完全清理重建之后,收集的文件系统大小数据才有意义。确保在使用 make
graph-size
之前运行 make clean all
。
To compare the root filesystem size of two different Buildroot compilations,
for example after adjusting the configuration or when switching to another
Buildroot release, use the size-stats-compare
script. It takes two
file-size-stats.csv
files (produced by make graph-size
) as input.
Refer to the help text of this script for more details:
要比较两个不同 Buildroot 编译的根文件系统大小,例如在调整配置或切换到另一个 Buildroot 版本后,请使用 size-stats-compare
脚本。它以两个 file-size-stats.csv
文件(由 make graph-size
生成)作为输入。有关更多详细信息,请参考此脚本的帮助文本:
utils/size-stats-compare -h
Note. This section deals with a very experimental feature, which is known to
break even in some non-unusual situations. Use at your own risk.
注意。本部分涉及一个非常实验性的功能,即使在一些非常规情况下也可能出现故障。请自行承担风险。
Buildroot has always been capable of using parallel build on a per
package basis: each package is built by Buildroot using make -jN
(or
the equivalent invocation for non-make-based build systems). The level
of parallelism is by default number of CPUs + 1, but it can be
adjusted using the BR2_JLEVEL
configuration option.
Buildroot 一直能够在每个软件包基础上使用并行构建:每个软件包由 Buildroot 使用 make -jN
(或者对于非基于 make 的构建系统的等效调用)构建。并行度默认为 CPU 数量+1,但可以使用 BR2_JLEVEL
配置选项进行调整。
Until 2020.02, Buildroot was however building packages in a serial
fashion: each package was built one after the other, without
parallelization of the build between packages. As of 2020.02,
Buildroot has experimental support for top-level parallel build,
which allows some signicant build time savings by building packages
that have no dependency relationship in parallel. This feature is
however marked as experimental and is known not to work in some cases.
直
到 2020.02,Buildroot 仍然以串行方式构建软件包:每个软件包都是一个接一个地构建的,软件包之间没有构建并行化。从 2020.02
开始,Buildroot
具有顶层并行构建的实验性支持,允许在没有依赖关系的软件包之间并行构建,从而节省构建时间。但是,该功能被标记为实验性,并且已知在某些情况下无法正常
工作。
In order to use top-level parallel build, one must:
要使用顶层并行构建,必须:
BR2_PER_PACKAGE_DIRECTORIES
in the Buildroot
configuration
BR2_PER_PACKAGE_DIRECTORIES
make -jN
when starting the Buildroot build
make -jN
Internally, the BR2_PER_PACKAGE_DIRECTORIES
will enable a mechanism
called per-package directories, which will have the following
effects:
在内部, BR2_PER_PACKAGE_DIRECTORIES
将启用一个名为每包目录的机制,其将产生以下效果:
$(O)/per-package/<pkg>/target/
and
$(O)/per-package/<pkg>/host/
respectively. Those folders will be
populated from the corresponding folders of the package dependencies
at the beginning of <pkg>
build. The compiler and all other tools
will therefore only be able to see and access files installed by
dependencies explicitly listed by <pkg>
.
$(O)/per-package/<pkg>/target/
和 $(O)/per-package/<pkg>/host/
中分别使用。这些文件夹将在 <pkg>
构建开始时从软件包依赖项的相应文件夹中填充。因此,编译器和所有其他工具只能看到和访问由 <pkg>
明确列出的依赖项安装的文件。$(O)/target
and $(O)/host
respectively. This means that during the build, those folders will
be empty and it’s only at the very end of the build that they will
be populated.
$(O)/target
和 $(O)/host
中。这意味着在构建过程中,这些文件夹将是空的,只有在构建的最后阶段它们才会被填充。You may want to compile, for your target, your own programs or other
software that are not packaged in Buildroot. In order to do this you
can use the toolchain that was generated by Buildroot.
您可能希望为您的目标编译自己的程序或其他未打包在 Buildroot 中的软件。为了做到这一点,您可以使用 Buildroot 生成的工具链。
The toolchain generated by Buildroot is located by default in
output/host/
. The simplest way to use it is to add
output/host/bin/
to your PATH environment variable and then to
use ARCH-linux-gcc
, ARCH-linux-objdump
, ARCH-linux-ld
, etc.
Buildroot 生成的工具链默认位于 output/host/
。使用它的最简单方法是将 output/host/bin/
添加到您的 PATH 环境变量,然后使用 ARCH-linux-gcc
, ARCH-linux-objdump
, ARCH-linux-ld
等。
Alternatively, Buildroot can also export the toolchain and the development
files of all selected packages, as an SDK, by running the command
make sdk
. This generates a tarball of the content of the host directory
output/host/
, named <TARGET-TUPLE>_sdk-buildroot.tar.gz
(which can be
overriden by setting the environment variable BR2_SDK_PREFIX
) and
located in the output directory output/images/
.
或者,Buildroot 还可以通过运行命令 make sdk
将所选包的工具链和开发文件导出为 SDK。这将生成主机目录 output/host/
内容的 tarball,命名为 <TARGET-TUPLE>_sdk-buildroot.tar.gz
(可以通过设置环境变量 BR2_SDK_PREFIX
进行覆盖),并位于输出目录 output/images/
中。
This tarball can then be distributed to application developers, when
they want to develop their applications that are not (yet) packaged as
a Buildroot package.
然后可以将此 tarball 分发给应用程序开发人员,以便在他们想要开发尚未(尚未)打包为 Buildroot 软件包的应用程序时使用。
Upon extracting the SDK tarball, the user must run the script
relocate-sdk.sh
(located at the top directory of the SDK), to make
sure all paths are updated with the new location.
在提取 SDK tarball 后,用户必须运行位于 SDK 顶级目录的脚本 relocate-sdk.sh
,以确保所有路径都已更新为新位置。
Alternatively, if you just want to prepare the SDK without generating
the tarball (e.g. because you will just be moving the host
directory,
or will be generating the tarball on your own), Buildroot also allows
you to just prepare the SDK with make prepare-sdk
without actually
generating a tarball.
或者,如果您只想准备 SDK 而不生成 tarball(例如,因为您只会移动 host
目录,或者将自行生成 tarball),Buildroot 还允许您只使用 make prepare-sdk
准备 SDK 而不实际生成 tarball。
For your convenience, by selecting the option
BR2_PACKAGE_HOST_ENVIRONMENT_SETUP
, you can get a
environment-setup
script installed in output/host/
and therefore
in your SDK. This script can be sourced with
. your/sdk/path/environment-setup
to export a number of environment
variables that will help cross-compile your projects using the
Buildroot SDK: the PATH
will contain the SDK binaries, standard
autotools variables will be defined with the appropriate values, and
CONFIGURE_FLAGS
will contain basic ./configure
options to
cross-compile autotools projects. It also provides some useful
commands. Note however that once this script is sourced, the
environment is setup only for cross-compilation, and no longer for
native compilation.
为了您的方便,通过选择选项 BR2_PACKAGE_HOST_ENVIRONMENT_SETUP
,您可以在 output/host/
中安装一个 environment-setup
脚本,因此也在您的 SDK 中。 可以使用 . your/sdk/path/environment-setup
来源此脚本,以导出一些环境变量,这些变量将有助于使用 Buildroot SDK 交叉编译您的项目: PATH
将包含 SDK 二进制文件,标准 autotools 变量将定义为适当的值,并且 CONFIGURE_FLAGS
将包含用于交叉编译 autotools 项目的基本 ./configure
选项。 它还提供一些有用的命令。 但请注意,一旦源化此脚本,环境仅设置为交叉编译,不再适用于本地编译。
Buildroot allows to do cross-debugging, where the debugger runs on the
build machine and communicates with gdbserver
on the target to
control the execution of the program.
Buildroot 允许进行交叉调试,其中调试器在构建机器上运行,并与目标上的 gdbserver
通信以控制程序的执行。
To achieve this: 要实现这一点:
BR2_PACKAGE_HOST_GDB
, BR2_PACKAGE_GDB
and
BR2_PACKAGE_GDB_SERVER
. This ensures that both the cross gdb and
gdbserver get built, and that gdbserver gets installed to your target.
BR2_PACKAGE_HOST_GDB
, BR2_PACKAGE_GDB
和 BR2_PACKAGE_GDB_SERVER
。这样可以确保交叉 gdb 和 gdbserver 都被构建,并且 gdbserver 被安装到您的目标设备上。BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY
, which will copy the
gdbserver included with the external toolchain to the target. If your
external toolchain does not have a cross gdb or gdbserver, it is also
possible to let Buildroot build them, by enabling the same options as
for the internal toolchain backend.
BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY
,这将复制包含在外部工具链中的 gdbserver 到目标设备上。如果您的外部工具链没有交叉 gdb 或 gdbserver,也可以让 Buildroot 构建它们,方法是启用与内部工具链后端相同的选项。Now, to start debugging a program called foo
, you should run on the
target:
现在,要开始调试一个名为 foo
的程序,您应该在目标设备上运行:
gdbserver :2345 foo
This will cause gdbserver
to listen on TCP port 2345 for a connection
from the cross gdb.
这将导致 gdbserver
监听 TCP 端口 2345,以便从跨 gdb 接收连接。
Then, on the host, you should start the cross gdb using the following
command line:
然后,在主机上,您应该使用以下命令行启动跨 gdb:
<buildroot>/output/host/bin/<tuple>-gdb -ix <buildroot>/output/staging/usr/share/buildroot/gdbinit foo
Of course, foo
must be available in the current directory, built
with debugging symbols. Typically you start this command from the
directory where foo
is built (and not from output/target/
as the
binaries in that directory are stripped).
当然, foo
必须在当前目录中可用,并带有调试符号。通常,您从构建 foo
的目录启动此命令(而不是从 output/target/
启动,因为该目录中的二进制文件已经剥离了)。
The <buildroot>/output/staging/usr/share/buildroot/gdbinit
file will tell the
cross gdb where to find the libraries of the target.
<buildroot>/output/staging/usr/share/buildroot/gdbinit
文件将告诉交叉 gdb 在哪里找到目标的库。
Finally, to connect to the target from the cross gdb:
最后,从交叉 gdb 连接到目标:
(gdb) target remote <target ip address>:2345
ccache is a compiler cache. It stores the
object files resulting from each compilation process, and is able to
skip future compilation of the same source file (with same compiler
and same arguments) by using the pre-existing object files. When doing
almost identical builds from scratch a number of times, it can nicely
speed up the build process.
ccache 是一个编译器缓存。它存储每个编译过程产生的目标文件,并且能够通过使用预先存在的目标文件跳过对相同源文件(使用相同编译器和相同参数)的未来编译。当多次从头开始进行几乎相同的构建时,它可以很好地加快构建过程。
ccache
support is integrated in Buildroot. You just have to enable
Enable compiler cache
in Build options
. This will automatically
build ccache
and use it for every host and target compilation.
ccache
支持已集成在 Buildroot 中。您只需在 Build options
中启用 Enable compiler cache
。这将自动构建 ccache
并将其用于每个主机和目标编译。
The cache is located in the directory defined by the BR2_CCACHE_DIR
configuration option, which defaults to
$HOME/.buildroot-ccache
. This default location is outside of
Buildroot output directory so that it can be shared by separate
Buildroot builds. If you want to get rid of the cache, simply remove
this directory.
缓存位于由 BR2_CCACHE_DIR
配置选项定义的目录中,默认为 $HOME/.buildroot-ccache
。此默认位置位于 Buildroot 输出目录之外,以便可以被单独的 Buildroot 构建共享。如果要摆脱缓存,只需删除此目录。
You can get statistics on the cache (its size, number of hits,
misses, etc.) by running make ccache-stats
.
通过运行 make ccache-stats
,您可以获取有关缓存的统计信息(其大小、命中次数、未命中次数等)。
The make target ccache-options
and the CCACHE_OPTIONS
variable
provide more generic access to the ccache. For example
make 目标 ccache-options
和 CCACHE_OPTIONS
变量提供了对 ccache 的更通用访问。例如
# set cache limit size make CCACHE_OPTIONS="--max-size=5G" ccache-options # zero statistics counters make CCACHE_OPTIONS="--zero-stats" ccache-options
ccache
makes a hash of the source files and of the compiler options.
If a compiler option is different, the cached object file will not be
used. Many compiler options, however, contain an absolute path to the
staging directory. Because of this, building in a different output
directory would lead to many cache misses.
ccache
对源文件和编译器选项进行哈希处理。如果编译器选项不同,则不会使用缓存的对象文件。然而,许多编译器选项包含到暂存目录的绝对路径。因此,在不同的输出目录中构建将导致许多缓存未命中。
To avoid this issue, buildroot has the Use relative paths
option
(BR2_CCACHE_USE_BASEDIR
). This will rewrite all absolute paths that
point inside the output directory into relative paths. Thus, changing
the output directory no longer leads to cache misses.
为了避免这个问题,buildroot 有 Use relative paths
选项( BR2_CCACHE_USE_BASEDIR
)。这将把指向输出目录内部的所有绝对路径重写为相对路径。因此,更改输出目录不再导致缓存未命中。
A disadvantage of the relative paths is that they also end up to be
relative paths in the object file. Therefore, for example, the debugger
will no longer find the file, unless you cd to the output directory
first.
相对路径的一个缺点是它们最终也变成了目标文件中的相对路径。因此,例如,除非您首先 cd 到输出目录,否则调试器将不再找到文件。
See the
ccache manual’s section on "Compiling in different directories" for
more details about this rewriting of absolute paths.
有关绝对路径重写的更多详细信息,请参阅 ccache 手册中关于“在不同目录中编译”的部分。
When ccache
is enabled in Buildroot using the BR2_CCACHE=y
option:
当在 Buildroot 中使用 BR2_CCACHE=y
选项启用 ccache
时:
ccache
is used during the Buildroot build itself
ccache
ccache
is not used when building outside of Buildroot, for example
when directly calling the cross-compiler or using the SDK
ccache
,例如直接调用交叉编译器或使用 SDKOne can override this behavior using the BR2_USE_CCACHE
environment
variable: when set to 1
, usage of ccache is enabled (default during
the Buildroot build), when unset or set to a value different from 1
,
usage of ccache is disabled.
可以使用 BR2_USE_CCACHE
环境变量覆盖此行为:当设置为 1
时,启用 ccache 的使用(在 Buildroot 构建期间默认),当未设置或设置为与 1
不同的值时,禁用 ccache 的使用。
The various tarballs that are downloaded by Buildroot are all stored
in BR2_DL_DIR
, which by default is the dl
directory. If you want
to keep a complete version of Buildroot which is known to be working
with the associated tarballs, you can make a copy of this directory.
This will allow you to regenerate the toolchain and the target
filesystem with exactly the same versions.
Buildroot 下载的各种 tarball 都存储在 BR2_DL_DIR
中,默认情况下是 dl
目录。如果您想保留一个已知与相关 tarball 一起工作的完整版本的 Buildroot 副本,可以复制此目录。这将允许您使用完全相同的版本重新生成工具链和目标文件系统。
If you maintain several Buildroot trees, it might be better to have a
shared download location. This can be achieved by pointing the
BR2_DL_DIR
environment variable to a directory. If this is
set, then the value of BR2_DL_DIR
in the Buildroot configuration is
overridden. The following line should be added to <~/.bashrc>
.
如果您维护多个 Buildroot 树,则最好有一个共享的下载位置。这可以通过将 BR2_DL_DIR
环境变量指向一个目录来实现。如果设置了这个变量,则 Buildroot 配置中的 BR2_DL_DIR
的值将被覆盖。应添加以下行到 <~/.bashrc>
。
export BR2_DL_DIR=<shared download location>
The download location can also be set in the .config
file, with the
BR2_DL_DIR
option. Unlike most options in the .config file, this value
is overridden by the BR2_DL_DIR
environment variable.
下载位置也可以在 .config
文件中使用 BR2_DL_DIR
选项进行设置。与.config 文件中的大多数选项不同,这个值会被 BR2_DL_DIR
环境变量覆盖。
Running make <package>
builds and installs that particular package
and its dependencies.
运行 make <package>
构建并安装该特定软件包及其依赖项。
For packages relying on the Buildroot infrastructure, there are
numerous special make targets that can be called independently like
this:
对于依赖于 Buildroot 基础设施的软件包,有许多特殊的 make 目标可以像这样独立调用:
make <package>-<target>
The package build targets are (in the order they are executed):
软件包构建目标为(按执行顺序排列):
command/target 命令/目标 | Description |
---|---|
| Fetch the source (download the tarball, clone
the source repository, etc) |
| Build and install all dependencies required to
build the package |
| Put the source in the package build directory
(extract the tarball, copy the source, etc) |
| Apply the patches, if any |
| Run the configure commands, if any |
| Run the compilation commands |
| target package: Run the installation of the package in the
staging directory, if necessary |
| target package: Run the installation of the package in the
target directory, if necessary |
| target package: Run the 2 previous installation commands host package: Run the installation of the package in the host
directory |
Additionally, there are some other useful make targets:
另外,还有一些其他有用的 make 目标:
command/target 命令/目标 | Description |
---|---|
| Displays the first-order dependencies required to build the
package |
| Recursively displays the dependencies
required to build the package |
| Displays the first-order reverse dependencies of
the package (i.e packages that directly depend on it) |
| Recursively displays the reverse
dependencies of the package (i.e the packages that depend on it,
directly or indirectly) |
| Generate a dependency graph of the package, in the
context of the current Buildroot configuration. See
this section for more details about dependency
graphs. |
| Generate a graph of this package reverse
dependencies (i.e the packages that depend on it, directly or
indirectly) |
| Remove the whole package build directory |
| Re-run the install commands |
| Re-run the compilation commands - this only makes
sense when using the |
| Re-run the configure commands, then rebuild - this only
makes sense when using the |
The normal operation of Buildroot is to download a tarball, extract
it, configure, compile and install the software component found inside
this tarball. The source code is extracted in
output/build/<package>-<version>
, which is a temporary directory:
whenever make clean
is used, this directory is entirely removed, and
re-created at the next make
invocation. Even when a Git or
Subversion repository is used as the input for the package source
code, Buildroot creates a tarball out of it, and then behaves as it
normally does with tarballs.
Buildroot 的正常操作是下载一个 tarball,解压缩,配置,编译和安装该 tarball 中找到的软件组件。源代码被提取到 output/build/<package>-<version>
中,这是一个临时目录:每当使用 make clean
时,该目录将被完全删除,并在下一次 make
调用时重新创建。即使使用 Git 或 Subversion 存储库作为软件包源代码的输入,Buildroot 也会从中创建一个 tarball,然后像处理 tarball 一样处理。
This behavior is well-suited when Buildroot is used mainly as an
integration tool, to build and integrate all the components of an
embedded Linux system. However, if one uses Buildroot during the
development of certain components of the system, this behavior is not
very convenient: one would instead like to make a small change to the
source code of one package, and be able to quickly rebuild the system
with Buildroot.
当
Buildroot 主要用作集成工具,用于构建和集成嵌入式 Linux
系统的所有组件时,这种行为非常合适。然而,如果在系统的某些组件开发过程中使用
Buildroot,则这种行为并不是很方便:人们更希望对一个软件包的源代码进行小改动,并能够快速使用 Buildroot 重新构建系统。
Making changes directly in output/build/<package>-<version>
is not
an appropriate solution, because this directory is removed on make
clean
.
直接在 output/build/<package>-<version>
中进行更改并不是一个合适的解决方案,因为该目录会在 make
clean
时被删除。
Therefore, Buildroot provides a specific mechanism for this use case:
the <pkg>_OVERRIDE_SRCDIR
mechanism. Buildroot reads an override
file, which allows the user to tell Buildroot the location of the
source for certain packages.
因此,Buildroot 为此使用案例提供了一个特定的机制: <pkg>_OVERRIDE_SRCDIR
机制。Buildroot 读取一个覆盖文件,允许用户告诉 Buildroot 某些软件包的源位置。
The default location of the override file is $(CONFIG_DIR)/local.mk
,
as defined by the BR2_PACKAGE_OVERRIDE_FILE
configuration option.
$(CONFIG_DIR)
is the location of the Buildroot .config
file, so
local.mk
by default lives side-by-side with the .config
file,
which means:
覆盖文件的默认位置是 $(CONFIG_DIR)/local.mk
,由 BR2_PACKAGE_OVERRIDE_FILE
配置选项定义。 $(CONFIG_DIR)
是 Buildroot .config
文件的位置,因此 local.mk
默认情况下与 .config
文件并排,这意味着:
O=
is not used)
O=
时)O=
is used)
O=
时)If a different location than these defaults is required, it can be
specified through the BR2_PACKAGE_OVERRIDE_FILE
configuration
option.
如果需要不同于这些默认值的位置,则可以通过 BR2_PACKAGE_OVERRIDE_FILE
配置选项指定。
In this override file, Buildroot expects to find lines of the form:
在此覆盖文件中,Buildroot 期望找到以下形式的行:
<pkg1>_OVERRIDE_SRCDIR = /path/to/pkg1/sources <pkg2>_OVERRIDE_SRCDIR = /path/to/pkg2/sources
For example: 例如:
LINUX_OVERRIDE_SRCDIR = /home/bob/linux/ BUSYBOX_OVERRIDE_SRCDIR = /home/bob/busybox/
When Buildroot finds that for a given package, an
<pkg>_OVERRIDE_SRCDIR
has been defined, it will no longer attempt to
download, extract and patch the package. Instead, it will directly use
the source code available in the specified directory and make clean
will not touch this directory. This allows to point Buildroot to your
own directories, that can be managed by Git, Subversion, or any other
version control system. To achieve this, Buildroot will use rsync to
copy the source code of the component from the specified
<pkg>_OVERRIDE_SRCDIR
to output/build/<package>-custom/
.
当 Buildroot 发现对于给定的软件包,已经定义了 <pkg>_OVERRIDE_SRCDIR
,它将不再尝试下载、提取和打补丁软件包。相反,它将直接使用指定目录中可用的源代码, make clean
将不会触及此目录。这允许将 Buildroot 指向您自己的目录,可以由 Git、Subversion 或任何其他版本控制系统管理。为了实现这一点,Buildroot 将使用 rsync 将组件的源代码从指定的 <pkg>_OVERRIDE_SRCDIR
复制到 output/build/<package>-custom/
。
This mechanism is best used in conjunction with the make
<pkg>-rebuild
and make <pkg>-reconfigure
targets. A make
<pkg>-rebuild all
sequence will rsync the source code from
<pkg>_OVERRIDE_SRCDIR
to output/build/<package>-custom
(thanks to
rsync, only the modified files are copied), and restart the build
process of just this package.
这种机制最好与 make
<pkg>-rebuild
和 make <pkg>-reconfigure
目标一起使用。 make
<pkg>-rebuild all
序列将使用 rsync 将源代码从 <pkg>_OVERRIDE_SRCDIR
复制到 output/build/<package>-custom
(由于 rsync,只复制修改过的文件),并重新启动仅此软件包的构建过程。
In the example of the linux
package above, the developer can then
make a source code change in /home/bob/linux
and then run:
在上面的 linux
包示例中,开发人员可以在 /home/bob/linux
中进行源代码更改,然后运行:
make linux-rebuild all
and in a matter of seconds gets the updated Linux kernel image in
output/images
. Similarly, a change can be made to the BusyBox source
code in /home/bob/busybox
, and after:
然后在几秒钟内在 output/images
中获得更新的 Linux 内核映像。类似地,可以对 BusyBox 源代码进行更改 /home/bob/busybox
,然后:
make busybox-rebuild all
the root filesystem image in output/images
contains the updated
BusyBox.
output/images
中的根文件系统映像包含更新的 BusyBox。
Source trees for big projects often contain hundreds or thousands of
files which are not needed for building, but will slow down the process
of copying the sources with rsync. Optionally, it is possible define
<pkg>_OVERRIDE_SRCDIR_RSYNC_EXCLUSIONS
to skip syncing certain files
from the source tree. For example, when working on the webkitgtk
package, the following will exclude the tests and in-tree builds from
a local WebKit source tree:
大型项目的源树通常包含数百甚至数千个文件,这些文件在构建时并不需要,但会减慢使用 rsync 复制源文件的过程。可以选择定义 <pkg>_OVERRIDE_SRCDIR_RSYNC_EXCLUSIONS
以跳过从源树同步某些文件。例如,在处理 webkitgtk
软件包时,以下内容将从本地 WebKit 源树中排除测试和内部构建:
WEBKITGTK_OVERRIDE_SRCDIR = /home/bob/WebKit WEBKITGTK_OVERRIDE_SRCDIR_RSYNC_EXCLUSIONS = \ --exclude JSTests --exclude ManualTests --exclude PerformanceTests \ --exclude WebDriverTests --exclude WebKitBuild --exclude WebKitLibraries \ --exclude WebKit.xcworkspace --exclude Websites --exclude Examples
By default, Buildroot skips syncing of VCS artifacts (e.g., the .git and
.svn directories). Some packages prefer to have these VCS directories
available during build, for example for automatically determining a precise
commit reference for version information. To undo this built-in filtering at a
cost of a slower speed, add these directories back:
默认情况下,Buildroot 跳过同步 VCS 文件(例如 .git 和 .svn 目录)。一些软件包希望在构建过程中保留这些 VCS 目录,例如用于自动确定精确的提交引用以获取版本信息。要取消这种内置过滤,以换取较慢的速度,请将这些目录添加回来:
LINUX_OVERRIDE_SRCDIR_RSYNC_EXCLUSIONS = --include .git
Typical actions you may need to perform for a given project are:
您可能需要为特定项目执行的典型操作包括:
customizing the generated target filesystem
自定义生成的目标文件系统
BR2_ROOTFS_OVERLAY
)
BR2_ROOTFS_OVERLAY
)BR2_ROOTFS_POST_BUILD_SCRIPT
)
BR2_ROOTFS_POST_BUILD_SCRIPT
)BR2_ROOTFS_POST_BUILD_SCRIPT
)
BR2_ROOTFS_POST_BUILD_SCRIPT
)BR2_ROOTFS_DEVICE_TABLE
)
BR2_ROOTFS_DEVICE_TABLE
)BR2_ROOTFS_STATIC_DEVICE_TABLE
)
BR2_ROOTFS_STATIC_DEVICE_TABLE
)BR2_ROOTFS_USERS_TABLES
)
BR2_ROOTFS_USERS_TABLES
)BR2_ROOTFS_POST_IMAGE_SCRIPT
)
BR2_ROOTFS_POST_IMAGE_SCRIPT
)BR2_GLOBAL_PATCH_DIR
)
BR2_GLOBAL_PATCH_DIR
)An important note regarding such project-specific customizations:
please carefully consider which changes are indeed project-specific and
which changes are also useful to developers outside your project. The
Buildroot community highly recommends and encourages the upstreaming of
improvements, packages and board support to the official Buildroot
project. Of course, it is sometimes not possible or desirable to
upstream because the changes are highly specific or proprietary.
关于这些项目特定定制的重要说明:请仔细考虑哪些更改确实是项目特定的,哪些更改对项目外的开发人员也有用。Buildroot 社区强烈建议并鼓励将改进、软件包和板支持上游到官方 Buildroot 项目。当然,有时由于更改非常具体或专有,可能无法或不希望上游。
This chapter describes how to make such project-specific customizations
in Buildroot and how to store them in a way that you can build the same
image in a reproducible way, even after running make clean. By
following the recommended strategy, you can even use the same Buildroot
tree to build multiple distinct projects!
本
章描述了如何在 Buildroot 中进行这种项目特定的定制以及如何以一种方式存储它们,以便您可以以可重现的方式构建相同的映像,即使在运行
make clean 后也是如此。通过遵循建议的策略,您甚至可以使用相同的 Buildroot 树来构建多个不同的项目!
When customizing Buildroot for your project, you will be creating one or
more project-specific files that need to be stored somewhere. While most
of these files could be placed in any location as their path is to be
specified in the Buildroot configuration, the Buildroot developers
recommend a specific directory structure which is described in this
section.
当为您的项目定制 Buildroot 时,您将创建一个或多个需要存储在某处的特定项目文件。尽管这些文件中的大多数可以放置在任何位置,因为它们的路径需要在 Buildroot 配置中指定,但 Buildroot 开发人员建议使用本节中描述的特定目录结构。
Orthogonal to this directory structure, you can choose where you place
this structure itself: either inside the Buildroot tree, or outside of
it using a br2-external tree. Both options are valid, the choice is up
to you.
与此目录结构正交的是,您可以选择将此结构放置在何处:要么在 Buildroot 树内部,要么在外部使用 br2-external 树。这两个选项都是有效的,选择权在您手中。
+-- board/ | +-- <company>/ | +-- <boardname>/ | +-- linux.config | +-- busybox.config | +-- <other configuration files> | +-- post_build.sh | +-- post_image.sh | +-- rootfs_overlay/ | | +-- etc/ | | +-- <some files> | +-- patches/ | +-- foo/ | | +-- <some patches> | +-- libbar/ | +-- <some other patches> | +-- configs/ | +-- <boardname>_defconfig | +-- package/ | +-- <company>/ | +-- Config.in (if not using a br2-external tree) | +-- <company>.mk (if not using a br2-external tree) | +-- package1/ | | +-- Config.in | | +-- package1.mk | +-- package2/ | +-- Config.in | +-- package2.mk | +-- Config.in (if using a br2-external tree) +-- external.mk (if using a br2-external tree) +-- external.desc (if using a br2-external tree)
Details on the files shown above are given further in this chapter.
上面显示的文件的详细信息将在本章中进一步给出。
Note: if you choose to place this structure outside of the Buildroot
tree but in a br2-external tree, the <company> and possibly <boardname>
components may be superfluous and can be left out.
注意:如果您选择将此结构放在 Buildroot 树之外,而是放在一个 br2-external 树中,则<company>和可能的<boardname>组件可能是多余的,可以省略。
It is quite common for a user to have several related projects that partly
need the same customizations. Instead of duplicating these
customizations for each project, it is recommended to use a layered
customization approach, as explained in this section.
用户经常有几个相关项目,其中部分需要相同的定制。建议不要为每个项目重复这些定制,而是建议使用分层定制方法,如本节所述。
Almost all of the customization methods available in Buildroot, like
post-build scripts and root filesystem overlays, accept a
space-separated list of items. The specified items are always treated in
order, from left to right. By creating more than one such item, one for
the common customizations and another one for the really
project-specific customizations, you can avoid unnecessary duplication.
Each layer is typically embodied by a separate directory inside
board/<company>/
. Depending on your projects, you could even introduce
more than two layers.
在
Buildroot
中提供的几乎所有定制方法,如构建后脚本和根文件系统叠加层,都接受一个以空格分隔的项目列表。指定的项目总是按顺序处理,从左到右。通过创建一个以上的
这种项目,一个用于常见定制,另一个用于真正的项目特定定制,您可以避免不必要的重复。每个层通常由 board/<company>/
内的单独目录体现。根据您的项目,甚至可以引入两个以上的层。
An example directory structure for where a user has two customization
layers common and fooboard is:
用户有两个定制层 common 和 fooboard 的示例目录结构如下:
+-- board/ +-- <company>/ +-- common/ | +-- post_build.sh | +-- rootfs_overlay/ | | +-- ... | +-- patches/ | +-- ... | +-- fooboard/ +-- linux.config +-- busybox.config +-- <other configuration files> +-- post_build.sh +-- rootfs_overlay/ | +-- ... +-- patches/ +-- ...
For example, if the user has the BR2_GLOBAL_PATCH_DIR
configuration
option set as:
例如,如果用户将 BR2_GLOBAL_PATCH_DIR
配置选项设置为:
BR2_GLOBAL_PATCH_DIR="board/<company>/common/patches board/<company>/fooboard/patches"
then first the patches from the common layer would be applied,
followed by the patches from the fooboard layer.
然后首先应用来自公共层的补丁,然后应用来自 fooboard 层的补丁。
As already briefly mentioned in Section 9.1, “Recommended directory structure”, you can
place project-specific customizations in two locations:
正如在第 9.1 节“推荐的目录结构”中简要提到的那样,您可以将项目特定的定制内容放在两个位置:
One can tell Buildroot to use one or more br2-external trees by setting
the BR2_EXTERNAL
make variable set to the path(s) of the br2-external
tree(s) to use. It can be passed to any Buildroot make
invocation. It
is automatically saved in the hidden .br2-external.mk
file in the output
directory. Thanks to this, there is no need to pass BR2_EXTERNAL
at
every make
invocation. It can however be changed at any time by
passing a new value, and can be removed by passing an empty value.
可以通过将 BR2_EXTERNAL
make 变量设置为要使用的 br2-external 树的路径(路径)来告诉 Buildroot 使用一个或多个 br2-external 树。它可以传递给任何 Buildroot make
调用。它会自动保存在输出目录中的隐藏 .br2-external.mk
文件中。由于这一点,没有必要在每次 make
调用时传递 BR2_EXTERNAL
。但是,可以随时通过传递新值来更改它,并且可以通过传递空值来删除它。
Note. The path to a br2-external tree can be either absolute or relative.
If it is passed as a relative path, it is important to note that it is
interpreted relative to the main Buildroot source directory, not to
the Buildroot output directory.
注意。对于 br2-external 树的路径可以是绝对路径,也可以是相对路径。如果作为相对路径传递,重要的是要注意,它是相对于主 Buildroot 源目录解释的,而不是相对于 Buildroot 输出目录。
Note: If using an br2-external tree from before Buildroot 2016.11, you need to
convert it before you can use it with Buildroot 2016.11 onward. See
Section 27.2, “Migrating to 2016.11” for help on doing so.
注意:如果使用的是 Buildroot 2016.11 之前的 br2-external 树,您需要在将其用于 Buildroot 2016.11 及以后版本之前进行转换。请参阅第 27.2 节“迁移到 2016.11”以获取帮助。
Some examples: 一些示例:
buildroot/ $ make BR2_EXTERNAL=/path/to/foo menuconfig
From now on, definitions from the /path/to/foo
br2-external tree
will be used:
从现在开始,将使用 /path/to/foo
br2-external 树中的定义:
buildroot/ $ make buildroot/ $ make legal-info
We can switch to another br2-external tree at any time:
我们可以随时切换到另一个 br2-external 树:
buildroot/ $ make BR2_EXTERNAL=/where/we/have/bar xconfig
We can also use multiple br2-external trees:
我们还可以使用多个 br2-external 树:
buildroot/ $ make BR2_EXTERNAL=/path/to/foo:/where/we/have/bar menuconfig
Or disable the usage of any br2-external tree:
或者禁用任何 br2-external 树的使用:
buildroot/ $ make BR2_EXTERNAL= xconfig
A br2-external tree must contain at least those three files, described
in the following chapters:
一个 br2-external 树必须至少包含以下章节中描述的这三个文件:
external.desc
external.mk
Config.in
Apart from those mandatory files, there may be additional and optional
content that may be present in a br2-external tree, like the configs/
or provides/
directories. They are described in the following chapters
as well.
除了那些强制性文件外,br2-external 树中可能还存在其他可选内容,例如 configs/
或 provides/
目录。它们也在后续章节中进行了描述。
A complete example br2-external tree layout is also described later.
完整的 br2-external 树布局示例也将在后面进行描述。
That file describes the br2-external tree: the name and description
for that br2-external tree.
该文件描述了 br2-external 树:br2-external 树的名称和描述。
The format for this file is line based, with each line starting by a
keyword, followed by a colon and one or more spaces, followed by the
value assigned to that keyword. There are two keywords currently
recognised:
该文件的格式是基于行的,每行以关键字开头,后跟一个冒号和一个或多个空格,然后是分配给该关键字的值。目前识别两个关键字:
name
, mandatory, defines the name for that br2-external tree. That
name must only use ASCII characters in the set [A-Za-z0-9_]
; any
other character is forbidden. Buildroot sets the variable
BR2_EXTERNAL_$(NAME)_PATH
to the absolute path of the br2-external
tree, so that you can use it to refer to your br2-external tree. This
variable is available both in Kconfig, so you can use it to source your
Kconfig files (see below) and in the Makefile, so that you can use it
to include other Makefiles (see below) or refer to other files (like
data files) from your br2-external tree.
name
,强制,定义了 br2-external 树的名称。该名称只能使用 ASCII 字符集中的字符 [A-Za-z0-9_]
;任何其他字符都是禁止的。Buildroot 将变量 BR2_EXTERNAL_$(NAME)_PATH
设置为 br2-external 树的绝对路径,以便您可以用它来引用您的 br2-external 树。此变量在 Kconfig
中可用,因此您可以用它来源自您的 Kconfig 文件(见下文),并且在 Makefile 中也可以使用它来包含其他
Makefile(见下文)或引用 br2-external 树中的其他文件(如数据文件)。
Note: Since it is possible to use multiple br2-external trees at once, this
name is used by Buildroot to generate variables for each of those trees.
That name is used to identify your br2-external tree, so try to come up
with a name that really describes your br2-external tree, in order for
it to be relatively unique, so that it does not clash with another name
from another br2-external tree, especially if you are planning on
somehow sharing your br2-external tree with third parties or using
br2-external trees from third parties.
注
意:由于可以同时使用多个 br2-external 树,因此 Buildroot 使用此名称为每个树生成变量。该名称用于标识您的
br2-external 树,因此请尽量想出一个真正描述您的 br2-external 树的名称,以使其相对唯一,以免与另一个
br2-external 树的名称冲突,特别是如果您计划以某种方式与第三方共享您的 br2-external 树或使用第三方的
br2-external 树。
desc
, optional, provides a short description for that br2-external
tree. It shall fit on a single line, is mostly free-form (see below),
and is used when displaying information about a br2-external tree (e.g.
above the list of defconfig files, or as the prompt in the menuconfig);
as such, it should relatively brief (40 chars is probably a good upper
limit). The description is available in the BR2_EXTERNAL_$(NAME)_DESC
variable.
desc
,可选,为该 br2-external 树提供简短描述。它应适合一行,大多是自由格式(见下文),在显示有关 br2-external
树的信息时使用(例如在 defconfig 文件列表上方,或作为 menuconfig 中的提示);因此,它应该相对简短(40
个字符可能是一个很好的上限)。描述可在 BR2_EXTERNAL_$(NAME)_DESC
变量中使用。Examples of names and the corresponding BR2_EXTERNAL_$(NAME)_PATH
variables:
名称示例及相应的 BR2_EXTERNAL_$(NAME)_PATH
变量:
FOO
→ BR2_EXTERNAL_FOO_PATH
BAR_42
→ BR2_EXTERNAL_BAR_42_PATH
In the following examples, it is assumed the name to be set to BAR_42
.
在以下示例中,假定名称设置为 BAR_42
。
Note: Both BR2_EXTERNAL_$(NAME)_PATH
and BR2_EXTERNAL_$(NAME)_DESC
are
available in the Kconfig files and the Makefiles. They are also
exported in the environment so are available in post-build, post-image
and in-fakeroot scripts.
注意:Kconfig 文件和 Makefiles 中都可以使用 BR2_EXTERNAL_$(NAME)_PATH
和 BR2_EXTERNAL_$(NAME)_DESC
。它们也会被导出到环境中,因此可以在构建后、生成镜像后以及伪根环境脚本中使用。
Those files (which may each be empty) can be used to define package
recipes (i.e. foo/Config.in
and foo/foo.mk
like for packages bundled
in Buildroot itself) or other custom configuration options or make logic.
这些文件(每个文件可能为空)可用于定义软件包配方(即类似于 Buildroot 本身捆绑软件包的 foo/Config.in
和 foo/foo.mk
)或其他自定义配置选项或构建逻辑。
Buildroot automatically includes the Config.in
from each br2-external
tree to make it appear in the top-level configuration menu, and includes
the external.mk
from each br2-external tree with the rest of the
makefile logic.
Buildroot 会自动将每个 br2-external 树中的 Config.in
包含在顶层配置菜单中,并将每个 br2-external 树中的 external.mk
与其余的 makefile 逻辑一起包含进来。
The main usage of this is to store package recipes. The recommended way
to do this is to write a Config.in
file that looks like:
这主要用于存储软件包配方。建议的做法是编写一个类似于 Config.in
的文件:
source "$BR2_EXTERNAL_BAR_42_PATH/package/package1/Config.in" source "$BR2_EXTERNAL_BAR_42_PATH/package/package2/Config.in"
Then, have an external.mk
file that looks like:
然后,编写一个类似于 external.mk
的文件:
include $(sort $(wildcard $(BR2_EXTERNAL_BAR_42_PATH)/package/*/*.mk))
And then in $(BR2_EXTERNAL_BAR_42_PATH)/package/package1
and
$(BR2_EXTERNAL_BAR_42_PATH)/package/package2
create normal
Buildroot package recipes, as explained in Chapter 18, Adding new packages to Buildroot.
If you prefer, you can also group the packages in subdirectories
called <boardname> and adapt the above paths accordingly.
然后在 $(BR2_EXTERNAL_BAR_42_PATH)/package/package1
和 $(BR2_EXTERNAL_BAR_42_PATH)/package/package2
中创建普通的 Buildroot 软件包配方,如第 18 章“将新软件包添加到 Buildroot”中所述。如果您愿意,还可以将软件包分组到名为的子目录中,并相应地调整上述路径。
You can also define custom configuration options in Config.in
and
custom make logic in external.mk
.
您还可以在 Config.in
中定义自定义配置选项,并在 external.mk
中定义自定义构建逻辑。
One can store Buildroot defconfigs in the configs
subdirectory of
the br2-external tree. Buildroot will automatically show them in the
output of make list-defconfigs
and allow them to be loaded with the
normal make <name>_defconfig
command. They will be visible in the
make list-defconfigs output, below an External configs
label that
contains the name of the br2-external tree they are defined in.
可以将 Buildroot defconfigs 存储在 br2-external 树的 configs
子目录中。Buildroot 将自动在 make list-defconfigs
的输出中显示它们,并允许使用正常的 make <name>_defconfig
命令加载它们。它们将在 make list-defconfigs 输出中可见,在一个包含它们所定义的 br2-external 树名称的 External configs
标签下。
Note: If a defconfig file is present in more than one br2-external tree, then
the one from the last br2-external tree is used. It is thus possible
to override a defconfig bundled in Buildroot or another br2-external
tree.
注意:如果一个 defconfig 文件存在于多个 br2-external 树中,则将使用最后一个 br2-external 树中的文件。因此,可以覆盖 Buildroot 或另一个 br2-external 树中捆绑的 defconfig。
For some packages, Buildroot provides a choice between two (or more)
implementations of API-compatible such packages. For example, there is
a choice to choose either libjpeg ot jpeg-turbo; there is one between
openssl or libressl; there is one to select one of the known,
pre-configured toolchains…
对于一些软件包,Buildroot 提供了在两个(或更多)实现 API 兼容的软件包之间进行选择的选项。例如,可以选择 libjpeg 或 jpeg-turbo;可以选择 openssl 或 libressl;可以选择已知的、预配置的工具链之一…
It is possible for a br2-external to extend those choices, by providing
a set of files that define those alternatives:
通过提供一组定义这些替代方案的文件,br2-external 可以扩展这些选择:
provides/toolchains.in
defines the pre-configured toolchains, which
will then be listed in the toolchain selection;
provides/toolchains.in
定义了预配置的工具链,然后这些工具链将列在工具链选择中;provides/jpeg.in
defines the alternative libjpeg implementations;
provides/jpeg.in
定义了替代的 libjpeg 实现;provides/openssl.in
defines the alternative openssl implementations;
provides/openssl.in
定义了替代的 openssl 实现;provides/skeleton.in
defines the alternative skeleton implementations;
provides/skeleton.in
定义了替代的骨架实现;provides/init.in
defines the alternative init system implementations, this
can be used to select a default skeleton for your init.
provides/init.in
定义了替代的 init 系统实现,这可以用于选择默认的 init 骨架。One can store all the board-specific configuration files there, such
as the kernel configuration, the root filesystem overlay, or any other
configuration file for which Buildroot allows to set the location (by
using the BR2_EXTERNAL_$(NAME)_PATH
variable). For example, you
could set the paths to a global patch directory, to a rootfs overlay
and to the kernel configuration file as follows (e.g. by running
make menuconfig
and filling in these options):
可以将所有特定于板级的配置文件存储在那里,例如内核配置、根文件系统叠加,或者任何其他 Buildroot 允许设置位置的配置文件(通过使用 BR2_EXTERNAL_$(NAME)_PATH
变量)。例如,您可以设置全局补丁目录、根文件系统叠加和内核配置文件的路径,方法如下(例如,通过运行 make menuconfig
并填写这些选项):
BR2_GLOBAL_PATCH_DIR=$(BR2_EXTERNAL_BAR_42_PATH)/patches/ BR2_ROOTFS_OVERLAY=$(BR2_EXTERNAL_BAR_42_PATH)/board/<boardname>/overlay/ BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE=$(BR2_EXTERNAL_BAR_42_PATH)/board/<boardname>/kernel.config
Additional Linux kernel extensions (see Section 18.22.2, “linux-kernel-extensions”) can
be added by storing them in the linux/
directory at the root of a
br2-external tree.
可以通过将附加的 Linux 内核扩展(请参阅第 18.22.2 节“linux-kernel-extensions”)存储在 br2-external 树的根目录中的 linux/
目录中来添加。
Here is an example layout using all features of br2-external (the sample
content is shown for the file above it, when it is relevant to explain
the br2-external tree; this is all entirely made up just for the sake of
illustration, of course):
这是一个使用 br2-external 所有功能的示例布局(当与解释 br2-external 树相关时,将显示上面文件的示例内容;当然,这完全是为了说明而虚构的)
/path/to/br2-ext-tree/ |- external.desc | |name: BAR_42 | |desc: Example br2-external tree | `---- | |- Config.in | |source "$BR2_EXTERNAL_BAR_42_PATH/toolchain/toolchain-external-mine/Config.in.options" | |source "$BR2_EXTERNAL_BAR_42_PATH/package/pkg-1/Config.in" | |source "$BR2_EXTERNAL_BAR_42_PATH/package/pkg-2/Config.in" | |source "$BR2_EXTERNAL_BAR_42_PATH/package/my-jpeg/Config.in" | | | |config BAR_42_FLASH_ADDR | | hex "my-board flash address" | | default 0x10AD | `---- | |- external.mk | |include $(sort $(wildcard $(BR2_EXTERNAL_BAR_42_PATH)/package/*/*.mk)) | |include $(sort $(wildcard $(BR2_EXTERNAL_BAR_42_PATH)/toolchain/*/*.mk)) | | | |flash-my-board: | | $(BR2_EXTERNAL_BAR_42_PATH)/board/my-board/flash-image \ | | --image $(BINARIES_DIR)/image.bin \ | | --address $(BAR_42_FLASH_ADDR) | `---- | |- package/pkg-1/Config.in | |config BR2_PACKAGE_PKG_1 | | bool "pkg-1" | | help | | Some help about pkg-1 | `---- |- package/pkg-1/pkg-1.hash |- package/pkg-1/pkg-1.mk | |PKG_1_VERSION = 1.2.3 | |PKG_1_SITE = /some/where/to/get/pkg-1 | |PKG_1_LICENSE = blabla | | | |define PKG_1_INSTALL_INIT_SYSV | | $(INSTALL) -D -m 0755 $(PKG_1_PKGDIR)/S99my-daemon \ | | $(TARGET_DIR)/etc/init.d/S99my-daemon | |endef | | | |$(eval $(autotools-package)) | `---- |- package/pkg-1/S99my-daemon | |- package/pkg-2/Config.in |- package/pkg-2/pkg-2.hash |- package/pkg-2/pkg-2.mk | |- provides/jpeg.in | |config BR2_PACKAGE_MY_JPEG | | bool "my-jpeg" | `---- |- package/my-jpeg/Config.in | |config BR2_PACKAGE_PROVIDES_JPEG | | default "my-jpeg" if BR2_PACKAGE_MY_JPEG | `---- |- package/my-jpeg/my-jpeg.mk | |# This is a normal package .mk file | |MY_JPEG_VERSION = 1.2.3 | |MY_JPEG_SITE = https://example.net/some/place | |MY_JPEG_PROVIDES = jpeg | |$(eval $(autotools-package)) | `---- | |- provides/init.in | |config BR2_INIT_MINE | | bool "my custom init" | | select BR2_PACKAGE_MY_INIT | | select BR2_PACKAGE_SKELETON_INIT_MINE if BR2_ROOTFS_SKELETON_DEFAULT | `---- | |- provides/skeleton.in | |config BR2_ROOTFS_SKELETON_MINE | | bool "my custom skeleton" | | select BR2_PACKAGE_SKELETON_MINE | `---- |- package/skeleton-mine/Config.in | |config BR2_PACKAGE_SKELETON_MINE | | bool | | select BR2_PACKAGE_HAS_SKELETON | | | |config BR2_PACKAGE_PROVIDES_SKELETON | | default "skeleton-mine" if BR2_PACKAGE_SKELETON_MINE | `---- |- package/skeleton-mine/skeleton-mine.mk | |SKELETON_MINE_ADD_TOOLCHAIN_DEPENDENCY = NO | |SKELETON_MINE_ADD_SKELETON_DEPENDENCY = NO | |SKELETON_MINE_PROVIDES = skeleton | |SKELETON_MINE_INSTALL_STAGING = YES | |$(eval $(generic-package)) | `---- | |- provides/toolchains.in | |config BR2_TOOLCHAIN_EXTERNAL_MINE | | bool "my custom toolchain" | | depends on BR2_some_arch | | select BR2_INSTALL_LIBSTDCPP | `---- |- toolchain/toolchain-external-mine/Config.in.options | |if BR2_TOOLCHAIN_EXTERNAL_MINE | |config BR2_TOOLCHAIN_EXTERNAL_PREFIX | | default "arch-mine-linux-gnu" | |config BR2_PACKAGE_PROVIDES_TOOLCHAIN_EXTERNAL | | default "toolchain-external-mine" | |endif | `---- |- toolchain/toolchain-external-mine/toolchain-external-mine.mk | |TOOLCHAIN_EXTERNAL_MINE_SITE = https://example.net/some/place | |TOOLCHAIN_EXTERNAL_MINE_SOURCE = my-toolchain.tar.gz | |$(eval $(toolchain-external-package)) | `---- | |- linux/Config.ext.in | |config BR2_LINUX_KERNEL_EXT_EXAMPLE_DRIVER | | bool "example-external-driver" | | help | | Example external driver | |--- |- linux/linux-ext-example-driver.mk | |- configs/my-board_defconfig | |BR2_GLOBAL_PATCH_DIR="$(BR2_EXTERNAL_BAR_42_PATH)/patches/" | |BR2_ROOTFS_OVERLAY="$(BR2_EXTERNAL_BAR_42_PATH)/board/my-board/overlay/" | |BR2_ROOTFS_POST_IMAGE_SCRIPT="$(BR2_EXTERNAL_BAR_42_PATH)/board/my-board/post-image.sh" | |BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="$(BR2_EXTERNAL_BAR_42_PATH)/board/my-board/kernel.config" | `---- | |- patches/linux/0001-some-change.patch |- patches/linux/0002-some-other-change.patch |- patches/busybox/0001-fix-something.patch | |- board/my-board/kernel.config |- board/my-board/overlay/var/www/index.html |- board/my-board/overlay/var/www/my.css |- board/my-board/flash-image `- board/my-board/post-image.sh |#!/bin/sh |generate-my-binary-image \ | --root ${BINARIES_DIR}/rootfs.tar \ | --kernel ${BINARIES_DIR}/zImage \ | --dtb ${BINARIES_DIR}/my-board.dtb \ | --output ${BINARIES_DIR}/image.bin `----
The br2-external tree will then be visible in the menuconfig (with
the layout expanded):
然后,br2-external 树将在 menuconfig 中可见(布局已展开):
External options ---> *** Example br2-external tree (in /path/to/br2-ext-tree/) [ ] pkg-1 [ ] pkg-2 (0x10AD) my-board flash address
If you are using more than one br2-external tree, it would look like
(with the layout expanded and the second one with name FOO_27
but no
desc:
field in external.desc
):
如果您使用多个 br2-external 树,它看起来会像这样(布局已展开,第二个树的名称为 FOO_27
,但在 external.desc
中没有 desc:
字段):
External options ---> Example br2-external tree ---> *** Example br2-external tree (in /path/to/br2-ext-tree) [ ] pkg-1 [ ] pkg-2 (0x10AD) my-board flash address FOO_27 ---> *** FOO_27 (in /path/to/another-br2-ext) [ ] foo [ ] bar
Additionally, the jpeg provider will be visible in the jpeg choice:
此外,jpeg 提供程序将在 jpeg 选择中可见:
Target packages ---> Libraries ---> Graphics ---> [*] jpeg support jpeg variant () ---> ( ) jpeg ( ) jpeg-turbo *** jpeg from: Example br2-external tree *** (X) my-jpeg *** jpeg from: FOO_27 *** ( ) another-jpeg
And similarly for the toolchains:
以及工具链类似:
Toolchain ---> Toolchain () ---> ( ) Custom toolchain *** Toolchains from: Example br2-external tree *** (X) my custom toolchain
Note. The toolchain options in toolchain/toolchain-external-mine/Config.in.options
will not appear in the Toolchain
menu. They must be explicitly included
from within the br2-external’s top-level Config.in
and will thus appear
in the External options
menu.
注意。 toolchain/toolchain-external-mine/Config.in.options
中的工具链选项不会出现在 Toolchain
菜单中。它们必须从 br2-external 的顶层 Config.in
中显式包含,因此会出现在 External options
菜单中。
The Buildroot configuration can be stored using the command
make savedefconfig
.
使用命令 make savedefconfig
可以存储 Buildroot 配置。
This strips the Buildroot configuration down by removing configuration
options that are at their default value. The result is stored in a file
called defconfig
. If you want to save it in another place, change the
BR2_DEFCONFIG
option in the Buildroot configuration itself, or call
make with make savedefconfig BR2_DEFCONFIG=<path-to-defconfig>
.
这将通过删除处于默认值的配置选项来简化 Buildroot 配置。结果存储在名为 defconfig
的文件中。如果想将其保存在其他位置,请在 Buildroot 配置本身中更改 BR2_DEFCONFIG
选项,或使用 make savedefconfig BR2_DEFCONFIG=<path-to-defconfig>
调用 make。
The recommended place to store this defconfig is
configs/<boardname>_defconfig
. If you follow this recommendation, the
configuration will be listed in make list-defconfigs
and can be set
again by running make <boardname>_defconfig
.
建议将此 defconfig 存储在 configs/<boardname>_defconfig
。如果遵循此建议,配置将列在 make list-defconfigs
中,并可以通过运行 make <boardname>_defconfig
再次设置。
Alternatively, you can copy the file to any other place and rebuild with
make defconfig BR2_DEFCONFIG=<path-to-defconfig-file>
.
或者,您可以将文件复制到任何其他位置,并使用 make defconfig BR2_DEFCONFIG=<path-to-defconfig-file>
重新构建。
The configuration files for BusyBox, the Linux kernel, Barebox, U-Boot
and uClibc should be stored as well if changed. For each of these
components, a Buildroot configuration option exists to point to an input
configuration file, e.g. BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
. To store
their configuration, set these configuration options to a path where you
want to save the configuration files, and then use the helper targets
described below to actually store the configuration.
如果更改了 BusyBox、Linux 内核、Barebox、U-Boot 和 uClibc 的配置文件,则应该将其存储。对于这些组件中的每一个,都存在一个 Buildroot 配置选项,用于指向一个输入配置文件,例如 BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
。要存储它们的配置,请将这些配置选项设置为您想要保存配置文件的路径,然后使用下面描述的辅助目标来实际存储配置。
As explained in Section 9.1, “Recommended directory structure”, the recommended path to
store these configuration files is
board/<company>/<boardname>/foo.config
.
如第 9.1 节“推荐目录结构”中所解释的,存储这些配置文件的推荐路径是 board/<company>/<boardname>/foo.config
。
Make sure that you create a configuration file before changing
the BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
etc. options. Otherwise,
Buildroot will try to access this config file, which doesn’t exist
yet, and will fail. You can create the configuration file by running
make linux-menuconfig
etc.
在更改 BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
等选项之前,请确保创建配置文件。否则,Buildroot 将尝试访问此配置文件,但该文件尚不存在,操作将失败。您可以通过运行 make linux-menuconfig
等来创建配置文件。
Buildroot provides a few helper targets to make the saving of
configuration files easier.
Buildroot 提供了一些辅助目标,以使配置文件的保存更加容易。
make linux-update-defconfig
saves the linux configuration to the
path specified by BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
. It
simplifies the config file by removing default values. However,
this only works with kernels starting from 2.6.33. For earlier
kernels, use make linux-update-config
.
make linux-update-defconfig
将 Linux 配置保存到由 BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
指定的路径。它通过删除默认值简化配置文件。但是,这仅适用于从 2.6.33 开始的内核。对于较早的内核,请使用 make linux-update-config
。make busybox-update-config
saves the busybox configuration to the
path specified by BR2_PACKAGE_BUSYBOX_CONFIG
.
make busybox-update-config
将 BusyBox 配置保存到由 BR2_PACKAGE_BUSYBOX_CONFIG
指定的路径。make uclibc-update-config
saves the uClibc configuration to the
path specified by BR2_UCLIBC_CONFIG
.
make uclibc-update-config
将 uClibc 配置保存到由 BR2_UCLIBC_CONFIG
指定的路径。make barebox-update-defconfig
saves the barebox configuration to the
path specified by BR2_TARGET_BAREBOX_CUSTOM_CONFIG_FILE
.
make barebox-update-defconfig
将 barebox 配置保存到指定路径 BR2_TARGET_BAREBOX_CUSTOM_CONFIG_FILE
中。make uboot-update-defconfig
saves the U-Boot configuration to the
path specified by BR2_TARGET_UBOOT_CUSTOM_CONFIG_FILE
.
make uboot-update-defconfig
将 U-Boot 配置保存到指定路径 BR2_TARGET_UBOOT_CUSTOM_CONFIG_FILE
中。BR2_TARGET_AT91BOOTSTRAP3_CUSTOM_CONFIG_FILE
.
BR2_TARGET_AT91BOOTSTRAP3_CUSTOM_CONFIG_FILE
。Besides changing the configuration through make *config
,
there are a few other ways to customize the resulting target filesystem.
除了通过 make *config
更改配置之外,还有其他几种方式可以定制生成的目标文件系统。
The two recommended methods, which can co-exist, are root filesystem
overlay(s) and post build script(s).
两种推荐的方法,可以共存,分别是根文件系统叠加和构建后脚本。
BR2_ROOTFS_OVERLAY
)
BR2_ROOTFS_OVERLAY
)A filesystem overlay is a tree of files that is copied directly
over the target filesystem after it has been built. To enable this
feature, set config option BR2_ROOTFS_OVERLAY
(in the System
configuration
menu) to the root of the overlay. You can even specify
multiple overlays, space-separated. If you specify a relative path,
it will be relative to the root of the Buildroot tree. Hidden
directories of version control systems, like .git
, .svn
, .hg
,
etc., files called .empty
and files ending in ~
are excluded from
the copy.
文件系统叠加是一个文件树,它在构建完成后直接复制到目标文件系统上。要启用此功能,请将配置选项 BR2_ROOTFS_OVERLAY
(在 System
configuration
菜单中) 设置为叠加的根目录。您甚至可以指定多个叠加,以空格分隔。如果指定相对路径,它将相对于 Buildroot 树的根目录。版本控制系统的隐藏目录,如 .git
、 .svn
、 .hg
等,名为 .empty
的文件和以 ~
结尾的文件将被排除在复制之外。
When BR2_ROOTFS_MERGED_USR
is enabled, then the overlay must not
contain the /bin, /lib or /sbin directories, as Buildroot will
create them as symbolic links to the relevant folders in /usr. In
such a situation, should the overlay have any programs or libraries,
they should be placed in /usr/bin, /usr/sbin and /usr/lib.
当启用 BR2_ROOTFS_MERGED_USR
时,叠加不能包含 /bin、/lib 或 /sbin 目录,因为 Buildroot 将创建它们作为指向 /usr
中相关文件夹的符号链接。在这种情况下,如果叠加包含任何程序或库,它们应放置在 /usr/bin、/usr/sbin 和 /usr/lib 中。
As shown in Section 9.1, “Recommended directory structure”, the recommended path for
this overlay is board/<company>/<boardname>/rootfs-overlay
.
如第 9.1 节“推荐目录结构”所示,此叠加层的推荐路径为 board/<company>/<boardname>/rootfs-overlay
。
BR2_ROOTFS_POST_BUILD_SCRIPT
)
BR2_ROOTFS_POST_BUILD_SCRIPT
)Post-build scripts are shell scripts called after Buildroot builds
all the selected software, but before the rootfs images are
assembled. To enable this feature, specify a space-separated list of
post-build scripts in config option BR2_ROOTFS_POST_BUILD_SCRIPT
(in
the System configuration
menu). If you specify a relative path, it
will be relative to the root of the Buildroot tree.
构建后脚本是在 Buildroot 构建所有选定软件之后但在组装根文件系统镜像之前调用的 shell 脚本。要启用此功能,请在配置选项 BR2_ROOTFS_POST_BUILD_SCRIPT
(在 System configuration
菜单中)中指定一个以空格分隔的构建后脚本列表。如果指定相对路径,它将相对于 Buildroot 树的根目录。
Using post-build scripts, you can remove or modify any file in your
target filesystem. You should, however, use this feature with care.
Whenever you find that a certain package generates wrong or unneeded
files, you should fix that package rather than work around it with some
post-build cleanup scripts.
使用后构建脚本,您可以删除或修改目标文件系统中的任何文件。但是,您应该谨慎使用此功能。每当您发现某个软件包生成错误或不需要的文件时,您应该修复该软件包,而不是通过一些后构建清理脚本来解决问题。
As shown in Section 9.1, “Recommended directory structure”, the recommended path for
this script is board/<company>/<boardname>/post_build.sh
.
如第 9.1 节“推荐的目录结构”所示,此脚本的推荐路径为 board/<company>/<boardname>/post_build.sh
。
The post-build scripts are run with the main Buildroot tree as current
working directory. The path to the target filesystem is passed as the
first argument to each script. If the config option
BR2_ROOTFS_POST_SCRIPT_ARGS
is not empty, these arguments will be
passed to the script too. All the scripts will be passed the exact
same set of arguments, it is not possible to pass different sets of
arguments to each script.
后构建脚本在主 Buildroot 树中运行,当前工作目录为当前目标文件系统。目标文件系统的路径将作为第一个参数传递给每个脚本。如果配置选项 BR2_ROOTFS_POST_SCRIPT_ARGS
不为空,则这些参数也将传递给脚本。所有脚本将传递完全相同的参数集,无法向每个脚本传递不同的参数集。
In addition, you may also use these environment variables:
另外,您还可以使用这些环境变量:
BR2_CONFIG
: the path to the Buildroot .config file
BR2_CONFIG
:Buildroot .config 文件的路径CONFIG_DIR
: the directory containing the .config file, and
therefore the top-level Buildroot Makefile to use (which is
correct for both in-tree and out-of-tree builds)
CONFIG_DIR
:包含 .config 文件的目录,因此可以使用顶层 Buildroot Makefile(对于树内和树外构建都是正确的)HOST_DIR
, STAGING_DIR
, TARGET_DIR
: see
Section 18.6.2, “generic-package
reference”HOST_DIR
, STAGING_DIR
, TARGET_DIR
:请参阅第 18.6.2 节,“ generic-package
参考”
BUILD_DIR
: the directory where packages are extracted and built
BUILD_DIR
:包被提取和构建的目录BINARIES_DIR
: the place where all binary files (aka images) are
stored
BINARIES_DIR
:存储所有二进制文件(也称为图像)的位置BASE_DIR
: the base output directory
BASE_DIR
:基本输出目录Below three more methods of customizing the target filesystem are
described, but they are not recommended.
下面描述了另外三种自定义目标文件系统的方法,但不建议使用。
For temporary modifications, you can modify the target filesystem
directly and rebuild the image. The target filesystem is available
under output/target/
. After making your changes, run make
to
rebuild the target filesystem image.
对于临时修改,您可以直接修改目标文件系统并重新构建映像。目标文件系统可在 output/target/
下找到。进行更改后,运行 make
以重新构建目标文件系统映像。
This method allows you to do anything to the target filesystem, but if
you need to clean your Buildroot tree using make clean
, these
changes will be lost. Such cleaning is necessary in several cases,
refer to Section 8.2, “Understanding when a full rebuild is necessary” for details. This solution is therefore
only useful for quick tests: changes do not survive the make clean
command. Once you have validated your changes, you should make sure
that they will persist after a make clean
, using a root filesystem
overlay or a post-build script.
此方法允许您对目标文件系统进行任何操作,但如果您需要使用 make clean
清理您的 Buildroot 树,这些更改将会丢失。在几种情况下,这种清理是必要的,请参阅第 8.2 节“了解何时需要进行完全重建”以获取详细信息。因此,此解决方案仅适用于快速测试:更改不会在 make clean
命令后保留。一旦您验证了更改,您应确保它们在 make clean
后仍然存在,可以使用根文件系统叠加或后构建脚本。
BR2_ROOTFS_SKELETON_CUSTOM
)
BR2_ROOTFS_SKELETON_CUSTOM
)The root filesystem image is created from a target skeleton, on top of
which all packages install their files. The skeleton is copied to the
target directory output/target
before any package is built and
installed. The default target skeleton provides the standard Unix
filesystem layout and some basic init scripts and configuration files.
根文件系统镜像是从目标骨架创建的,在这个骨架上,所有软件包都会安装它们的文件。在构建和安装任何软件包之前,骨架会被复制到目标目录 output/target
中。默认的目标骨架提供了标准的 Unix 文件系统布局以及一些基本的初始化脚本和配置文件。
If the default skeleton (available under system/skeleton
) does not
match your needs, you would typically use a root filesystem overlay or
post-build script to adapt it. However, if the default skeleton is
entirely different than what you need, using a custom skeleton may be
more suitable.
如果默认的骨架(位于 system/skeleton
下)不符合您的需求,您通常会使用根文件系统叠加或后期构建脚本来进行调整。然而,如果默认的骨架与您的需求完全不同,使用自定义骨架可能更合适。
To enable this feature, enable config option
BR2_ROOTFS_SKELETON_CUSTOM
and set BR2_ROOTFS_SKELETON_CUSTOM_PATH
to the path of your custom skeleton. Both options are available in the
System configuration
menu. If you specify a relative path, it will
be relative to the root of the Buildroot tree.
要启用此功能,请启用配置选项 BR2_ROOTFS_SKELETON_CUSTOM
并将 BR2_ROOTFS_SKELETON_CUSTOM_PATH
设置为您自定义骨架的路径。这两个选项都可以在 System configuration
菜单中找到。如果指定相对路径,它将相对于 Buildroot 树的根目录。
Custom skeletons don’t need to contain the /bin, /lib or /sbin
directories, since they are created automatically during the build.
When BR2_ROOTFS_MERGED_USR
is enabled, then the custom skeleton must
not contain the /bin, /lib or /sbin directories, as Buildroot
will create them as symbolic links to the relevant folders in /usr.
In such a situation, should the skeleton have any programs or
libraries, they should be placed in /usr/bin, /usr/sbin and
/usr/lib.
自定义骨架不需要包含/bin、/lib 或/sbin 目录,因为它们会在构建过程中自动生成。当启用 BR2_ROOTFS_MERGED_USR
时,自定义骨架不应包含/bin、/lib 或/sbin 目录,因为 Buildroot 会将它们创建为指向/usr 中相关文件夹的符号链接。在这种情况下,如果骨架中有任何程序或库,它们应放置在/usr/bin、/usr/sbin 和/usr/lib 中。
This method is not recommended because it duplicates the entire
skeleton, which prevents taking advantage of the fixes or improvements
brought to the default skeleton in later Buildroot releases.
不推荐使用此方法,因为它会复制整个骨架,这将阻止利用后续 Buildroot 版本中默认骨架的修复或改进。
BR2_ROOTFS_POST_FAKEROOT_SCRIPT
)
BR2_ROOTFS_POST_FAKEROOT_SCRIPT
)When aggregating the final images, some parts of the process requires
root rights: creating device nodes in /dev
, setting permissions or
ownership to files and directories… To avoid requiring actual root
rights, Buildroot uses fakeroot
to simulate root rights. This is not
a complete substitute for actually being root, but is enough for what
Buildroot needs.
在聚合最终图像时,某些过程的某些部分需要 root 权限:在 /dev
中创建设备节点,设置文件和目录的权限或所有权... 为了避免需要实际的 root 权限,Buildroot 使用 fakeroot
来模拟 root 权限。这并不能完全替代实际的 root 权限,但对于 Buildroot 需要的内容足够了。
Post-fakeroot scripts are shell scripts that are called at the end of
the fakeroot phase, right before the filesystem image generator is
called. As such, they are called in the fakeroot context.
后伪装脚本是在伪装阶段结束时调用的 shell 脚本,在文件系统图像生成器被调用之前调用。因此,它们是在伪装上下文中调用的。
Post-fakeroot scripts can be useful in case you need to tweak the
filesystem to do modifications that are usually only available to the
root user.
后伪装脚本在需要调整文件系统以进行通常仅对 root 用户可用的修改时非常有用。
Note: It is recommended to use the existing mechanisms to set file permissions
or create entries in /dev
(see Section 9.5.1, “Setting file permissions and ownership and adding custom devices nodes”) or
to create users (see Section 9.6, “Adding custom user accounts”)
注意:建议使用现有机制设置文件权限或在 /dev
中创建条目(请参见第 9.5.1 节“设置文件权限和所有权以及添加自定义设备节点”)或创建用户(请参见第 9.6 节“添加自定义用户帐户”)
Note: The difference between post-build scripts (above) and fakeroot scripts,
is that post-build scripts are not called in the fakeroot context.
注意:后构建脚本(上文)和 fakeroot 脚本之间的区别在于后构建脚本不在 fakeroot 上下文中调用。
Note: Using fakeroot
is not an absolute substitute for actually being root.
fakeroot
only ever fakes the file access rights and types (regular,
block-or-char device…) and uid/gid; these are emulated in-memory.
注意:使用 fakeroot
并非绝对替代实际的 root。 fakeroot
只是伪造文件访问权限和类型(常规、块设备或字符设备...)以及 uid/gid;这些都是在内存中模拟的。
Sometimes it is needed to set specific permissions or ownership on files
or device nodes. For example, certain files may need to be owned by
root. Since the post-build scripts are not run as root, you cannot do
such changes from there unless you use an explicit fakeroot from the
post-build script.
有时需要在文件或设备节点上设置特定权限或所有权。例如,某些文件可能需要由 root 所有。由于后构建脚本不是以 root 身份运行的,因此除非您在后构建脚本中使用显式 fakeroot,否则无法进行此类更改。
Instead, Buildroot provides support for so-called permission tables.
To use this feature, set config option BR2_ROOTFS_DEVICE_TABLE
to a
space-separated list of permission tables, regular text files following
the makedev syntax.
相反,Buildroot 提供了所谓的权限表支持。要使用此功能,请将配置选项 BR2_ROOTFS_DEVICE_TABLE
设置为以空格分隔的权限表列表,这些权限表是遵循 makedev 语法的常规文本文件。
If you are using a static device table (i.e. not using devtmpfs
,
mdev
, or (e)udev
) then you can add device nodes using the same
syntax, in so-called device tables. To use this feature, set config
option BR2_ROOTFS_STATIC_DEVICE_TABLE
to a space-separated list of
device tables.
如果您正在使用静态设备表(即不使用 devtmpfs
, mdev
或 (e)udev
),那么您可以使用相同的语法在所谓的设备表中添加设备节点。要使用此功能,请将配置选项 BR2_ROOTFS_STATIC_DEVICE_TABLE
设置为设备表的空格分隔列表。
As shown in Section 9.1, “Recommended directory structure”, the recommended location for
such files is board/<company>/<boardname>/
.
如第 9.1 节“推荐的目录结构”所示,此类文件的推荐位置是 board/<company>/<boardname>/
。
It should be noted that if the specific permissions or device nodes are
related to a specific application, you should set variables
FOO_PERMISSIONS
and FOO_DEVICES
in the package’s .mk
file instead
(see Section 18.6.2, “generic-package
reference”).
应注意,如果特定权限或设备节点与特定应用程序相关,则应在软件包的 .mk
文件中设置变量 FOO_PERMISSIONS
和 FOO_DEVICES
(请参阅第 18.6.2 节“ generic-package
参考”)。
Sometimes it is needed to add specific users in the target system.
To cover this requirement, Buildroot provides support for so-called
users tables. To use this feature, set config option
BR2_ROOTFS_USERS_TABLES
to a space-separated list of users tables,
regular text files following the makeusers syntax.
有时需要在目标系统中添加特定用户。为了满足这一要求,Buildroot 提供了对所谓的用户表的支持。要使用此功能,请将配置选项 BR2_ROOTFS_USERS_TABLES
设置为用户表的空格分隔列表,这些用户表是遵循 makeusers 语法的常规文本文件。
As shown in Section 9.1, “Recommended directory structure”, the recommended location for
such files is board/<company>/<boardname>/
.
如第 9.1 节“推荐的目录结构”所示,此类文件的推荐位置是 board/<company>/<boardname>/
。
It should be noted that if the custom users are related to a specific
application, you should set variable FOO_USERS
in the package’s .mk
file instead (see Section 18.6.2, “generic-package
reference”).
需要注意的是,如果自定义用户与特定应用程序相关联,应该在软件包的 .mk
文件中设置变量 FOO_USERS
(请参阅第 18.6.2 节“ generic-package
参考”)。
While post-build scripts (Section 9.5, “Customizing the generated target filesystem”) are run before
building the filesystem image, kernel and bootloader, post-image
scripts can be used to perform some specific actions after all images
have been created.
在构建文件系统映像、内核和引导加载程序之前运行后构建脚本(第 9.5 节“定制生成的目标文件系统”),后图像脚本可用于在创建所有图像后执行一些特定操作。
Post-image scripts can for example be used to automatically extract your
root filesystem tarball in a location exported by your NFS server, or
to create a special firmware image that bundles your root filesystem and
kernel image, or any other custom action required for your project.
例如,后图像脚本可用于自动提取您的根文件系统 tarball 到由 NFS 服务器导出的位置,或者创建一个捆绑您的根文件系统和内核映像的特殊固件映像,或者为您的项目需要的任何其他自定义操作。
To enable this feature, specify a space-separated list of post-image
scripts in config option BR2_ROOTFS_POST_IMAGE_SCRIPT
(in the System
configuration
menu). If you specify a relative path, it will be
relative to the root of the Buildroot tree.
要启用此功能,请在配置选项 BR2_ROOTFS_POST_IMAGE_SCRIPT
(在 System
configuration
菜单中)中指定一组以空格分隔的后图像脚本列表。如果指定相对路径,它将相对于 Buildroot 树的根目录。
Just like post-build scripts, post-image scripts are run with the main
Buildroot tree as current working directory. The path to the images
output directory is passed as the first argument to each script. If the
config option BR2_ROOTFS_POST_SCRIPT_ARGS
is not empty, these
arguments will be passed to the script too. All the scripts will be
passed the exact same set of arguments, it is not possible to pass
different sets of arguments to each script.
就像后构建脚本一样,后图像脚本会以主 Buildroot 树作为当前工作目录运行。将 images
输出目录的路径作为每个脚本的第一个参数传递。如果配置选项 BR2_ROOTFS_POST_SCRIPT_ARGS
不为空,则这些参数也将传递给脚本。所有脚本将传递完全相同的参数集,无法向每个脚本传递不同的参数集。
Again just like for the post-build scripts, the scripts have access to
the environment variables BR2_CONFIG
, HOST_DIR
, STAGING_DIR
,
TARGET_DIR
, BUILD_DIR
, BINARIES_DIR
, CONFIG_DIR
and
BASE_DIR
.
就像对于后构建脚本一样,脚本可以访问环境变量 BR2_CONFIG
, HOST_DIR
, STAGING_DIR
, TARGET_DIR
, BUILD_DIR
, BINARIES_DIR
, CONFIG_DIR
和 BASE_DIR
。
The post-image scripts will be executed as the user that executes
Buildroot, which should normally not be the root user. Therefore, any
action requiring root permissions in one of these scripts will require
special handling (usage of fakeroot or sudo), which is left to the
script developer.
后图像脚本将以执行 Buildroot 的用户身份执行,这通常不应该是 root 用户。因此,在这些脚本中需要根权限的任何操作将需要特殊处理(使用 fakeroot 或 sudo),这留给脚本开发者处理。
It is sometimes useful to apply extra patches to packages - on top of
those provided in Buildroot. This might be used to support custom
features in a project, for example, or when working on a new
architecture.
有时候,在构建系统提供的基础上,向软件包应用额外的补丁是很有用的。这可能用于支持项目中的自定义功能,例如在开发新架构时。
The BR2_GLOBAL_PATCH_DIR
configuration option can be used to specify
a space separated list of one or more directories containing package
patches.
" BR2_GLOBAL_PATCH_DIR
"配置选项可用于指定一个或多个包含软件包补丁的空格分隔目录列表。
For a specific version <packageversion>
of a specific package
<packagename>
, patches are applied from BR2_GLOBAL_PATCH_DIR
as
follows:
对于特定版本 <packageversion>
的特定软件包 <packagename>
,补丁将从 BR2_GLOBAL_PATCH_DIR
应用如下:
For every directory - <global-patch-dir>
- that exists in
BR2_GLOBAL_PATCH_DIR
, a <package-patch-dir>
will be determined as
follows:
对于每个存在于 BR2_GLOBAL_PATCH_DIR
中的目录 - <global-patch-dir>
-,将按以下方式确定 <package-patch-dir>
:
<global-patch-dir>/<packagename>/<packageversion>/
if the
directory exists.
<global-patch-dir>/<packagename>/<packageversion>/
。<global-patch-dir>/<packagename>
if the directory
exists.
<global-patch-dir>/<packagename>
。
Patches will then be applied from a <package-patch-dir>
as
follows:
然后将从 <package-patch-dir>
应用补丁。
series
file exists in the package directory, then patches are
applied according to the series
file;
series
文件,则根据 series
文件应用补丁;*.patch
are applied in
alphabetical order. So, to ensure they are applied in the right
order, it is highly recommended to name the patch files like this:
<number>-<description>.patch
, where <number>
refers to the
apply order.
*.patch
匹配的补丁文件。因此,为确保它们按正确顺序应用,强烈建议将补丁文件命名为 <number>-<description>.patch
,其中 <number>
表示应用顺序。For information about how patches are applied for a package, see
Section 19.2, “How patches are applied”
有关如何为软件包应用补丁的信息,请参阅第 19.2 节“如何应用补丁”。
The BR2_GLOBAL_PATCH_DIR
option is the preferred method for
specifying a custom patch directory for packages. It can be used to
specify a patch directory for any package in buildroot. It should also
be used in place of the custom patch directory options that are
available for packages such as U-Boot and Barebox. By doing this, it
will allow a user to manage their patches from one top-level
directory.
BR2_GLOBAL_PATCH_DIR
选项是指定软件包自定义补丁目录的首选方法。它可用于为 buildroot 中的任何软件包指定补丁目录。还应该用它来替代可用于软件包(如 U-Boot 和 Barebox)的自定义补丁目录选项。通过这样做,用户可以从一个顶级目录管理他们的补丁。
The exception to BR2_GLOBAL_PATCH_DIR
being the preferred method for
specifying custom patches is BR2_LINUX_KERNEL_PATCH
.
BR2_LINUX_KERNEL_PATCH
should be used to specify kernel patches that
are available at a URL. Note: BR2_LINUX_KERNEL_PATCH
specifies kernel
patches that are applied after patches available in BR2_GLOBAL_PATCH_DIR
,
as it is done from a post-patch hook of the Linux package.
除了 BR2_GLOBAL_PATCH_DIR
是指定自定义补丁的首选方法之外, BR2_LINUX_KERNEL_PATCH
是一个例外。应该使用 BR2_LINUX_KERNEL_PATCH
来指定可在 URL 上找到的内核补丁。注意: BR2_LINUX_KERNEL_PATCH
指定了在 BR2_GLOBAL_PATCH_DIR
中可用的补丁之后应用的内核补丁,因为它是从 Linux 软件包的后补丁钩子中执行的。
Buildroot bundles a list of hashes against
which it checks the integrity of the downloaded archives, or of those
it generates locally from VCS checkouts. However, it can only do so
for the known versions; for packages where it is possible to specify
a custom version (e.g. a custom version string, a remote tarball URL,
or a VCS repository location and changeset), Buildroot can’t carry
hashes for those.
Buildroot
捆绑了一系列哈希值,用于检查下载的存档文件的完整性,或者从 VCS
检出本地生成的存档文件。但是,它只能对已知版本执行此操作;对于可以指定自定义版本的软件包(例如自定义版本字符串、远程 tarball URL 或
VCS 存储库位置和更改集的软件包),Buildroot 无法携带这些哈希值。
For users concerned with the integrity of such downloads, it is possible
to provide a list of hashes that Buildroot can use to check arbitrary
downloaded files. Those extra hashes are looked up similarly to the
extra patches (above); for each directory in BR2_GLOBAL_PATCH_DIR
,
the first file to exist is used to check a package download:
对于关心此类下载完整性的用户,可以提供一系列哈希值,Buildroot 可以用来检查任意下载的文件。这些额外的哈希值类似于额外的补丁(上文)进行查找;对于 BR2_GLOBAL_PATCH_DIR
中的每个目录,用于检查软件包下载的第一个存在的文件是:
<global-patch-dir>/<packagename>/<packageversion>/<packagename>.hash
<global-patch-dir>/<packagename>/<packagename>.hash
The utils/add-custom-hashes
script can be used to generate these files.
utils/add-custom-hashes
脚本可用于生成这些文件。
In general, any new package should be added directly in the package
directory and submitted to the Buildroot upstream project. How to add
packages to Buildroot in general is explained in full detail in
Chapter 18, Adding new packages to Buildroot and will not be repeated here. However, your
project may need some proprietary packages that cannot be upstreamed.
This section will explain how you can keep such project-specific
packages in a project-specific directory.
一般来说,任何新软件包都应直接添加到 package
目录,并提交到 Buildroot 上游项目。一般情况下如何向 Buildroot 添加软件包在第 18 章“向 Buildroot
添加新软件包”中有详细说明,这里不再重复。但是,您的项目可能需要一些无法上游的专有软件包。本节将解释如何将这些项目特定软件包保留在项目特定目录
中。
As shown in Section 9.1, “Recommended directory structure”, the recommended location for
project-specific packages is package/<company>/
. If you are using the
br2-external tree feature (see Section 9.2, “Keeping customizations outside of Buildroot”) the recommended
location is to put them in a sub-directory named package/
in your
br2-external tree.
如第 9.1 节“推荐的目录结构”所示,项目特定软件包的推荐位置是 package/<company>/
。如果您正在使用 br2-external 树功能(请参阅第 9.2 节“将自定义内容放在 Buildroot 之外”),建议将它们放在 br2-external 树中名为 package/
的子目录中。
However, Buildroot will not be aware of the packages in this location,
unless we perform some additional steps. As explained in
Chapter 18, Adding new packages to Buildroot, a package in Buildroot basically consists of two
files: a .mk
file (describing how to build the package) and a
Config.in
file (describing the configuration options for this
package).
但是,除非我们执行一些额外的步骤,否则 Buildroot 将不会意识到此位置中的软件包。如第 18 章“向 Buildroot 添加新软件包”中所解释的,Buildroot 中的软件包基本上由两个文件组成:一个 .mk
文件(描述如何构建软件包)和一个 Config.in
文件(描述此软件包的配置选项)。
Buildroot will automatically include the .mk
files in first-level
subdirectories of the package
directory (using the pattern
package/*/*.mk
). If we want Buildroot to include .mk
files from
deeper subdirectories (like package/<company>/package1/
) then we
simply have to add a .mk
file in a first-level subdirectory that
includes these additional .mk
files. Therefore, create a file
package/<company>/<company>.mk
with following contents (assuming you
have only one extra directory level below package/<company>/
):
Buildroot 将自动包含 package
目录的一级子目录中的 .mk
文件(使用模式 package/*/*.mk
)。如果我们希望 Buildroot 包含更深层子目录(如 package/<company>/package1/
)中的 .mk
文件,那么我们只需在包含这些额外 .mk
文件的一级子目录中添加一个 .mk
文件。因此,请创建一个文件 package/<company>/<company>.mk
,其中包含以下内容(假设您在 package/<company>/
下只有一个额外的目录级别):
include $(sort $(wildcard package/<company>/*/*.mk))
For the Config.in
files, create a file package/<company>/Config.in
that includes the Config.in
files of all your packages. An exhaustive
list has to be provided since wildcards are not supported in the source command of kconfig.
For example:
对于 Config.in
文件,请创建一个文件 package/<company>/Config.in
,其中包含所有软件包的 Config.in
文件。必须提供详尽的列表,因为 kconfig 的源命令中不支持通配符。例如:
source "package/<company>/package1/Config.in" source "package/<company>/package2/Config.in"
Include this new file package/<company>/Config.in
from
package/Config.in
, preferably in a company-specific menu to make
merges with future Buildroot versions easier.
包括从 package/Config.in
中的 package/<company>/Config.in
新文件,最好放在公司特定菜单中,以便将来更容易地与 Buildroot 版本合并。
If using a br2-external tree, refer to Section 9.2, “Keeping customizations outside of Buildroot” for how
to fill in those files.
如果使用 br2-external 树,请参阅第 9.2 节“将自定义内容保留在 Buildroot 之外”以了解如何填写这些文件。
Earlier in this chapter, the different methods for making
project-specific customizations have been described. This section will
now summarize all this by providing step-by-step instructions to storing your
project-specific customizations. Clearly, the steps that are not relevant to
your project can be skipped.
在本章的前面部分,已经描述了制作项目特定定制的不同方法。本节将通过提供逐步说明来总结所有内容,以存储您的项目特定定制。显然,与您的项目无关的步骤可以跳过。
make menuconfig
to configure toolchain, packages and kernel.
make menuconfig
配置工具链、软件包和内核。make linux-menuconfig
to update the kernel config, similar for
other configuration like busybox, uclibc, …
make linux-menuconfig
更新内核配置,其他配置类似于 busybox、uclibc 等。mkdir -p board/<manufacturer>/<boardname>
Set the following options to board/<manufacturer>/<boardname>/<package>.config
(as far as they are relevant):
将以下选项设置为 board/<manufacturer>/<boardname>/<package>.config
(只要它们是相关的):
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE
BR2_PACKAGE_BUSYBOX_CONFIG
BR2_UCLIBC_CONFIG
BR2_TARGET_AT91BOOTSTRAP3_CUSTOM_CONFIG_FILE
BR2_TARGET_BAREBOX_CUSTOM_CONFIG_FILE
BR2_TARGET_UBOOT_CUSTOM_CONFIG_FILE
Write the configuration files:
编写配置文件:
make linux-update-defconfig
make busybox-update-config
make uclibc-update-config
cp <output>/build/at91bootstrap3-*/.config
board/<manufacturer>/<boardname>/at91bootstrap3.config
make barebox-update-defconfig
make uboot-update-defconfig
board/<manufacturer>/<boardname>/rootfs-overlay/
and fill it
with additional files you need on your rootfs, e.g.
board/<manufacturer>/<boardname>/rootfs-overlay/etc/inittab
.
Set BR2_ROOTFS_OVERLAY
to board/<manufacturer>/<boardname>/rootfs-overlay
.
board/<manufacturer>/<boardname>/rootfs-overlay/
并填充所需的其他文件到您的 rootfs,例如 board/<manufacturer>/<boardname>/rootfs-overlay/etc/inittab
。将 BR2_ROOTFS_OVERLAY
设置为 board/<manufacturer>/<boardname>/rootfs-overlay
。board/<manufacturer>/<boardname>/post_build.sh
. Set
BR2_ROOTFS_POST_BUILD_SCRIPT
to
board/<manufacturer>/<boardname>/post_build.sh
board/<manufacturer>/<boardname>/post_build.sh
。将 BR2_ROOTFS_POST_BUILD_SCRIPT
设置为 board/<manufacturer>/<boardname>/post_build.sh
board/<manufacturer>/<boardname>/device_table.txt
and add that path to BR2_ROOTFS_DEVICE_TABLE
.
board/<manufacturer>/<boardname>/device_table.txt
并将该路径添加到 BR2_ROOTFS_DEVICE_TABLE
。board/<manufacturer>/<boardname>/users_table.txt
and add that path
to BR2_ROOTFS_USERS_TABLES
.
board/<manufacturer>/<boardname>/users_table.txt
并将该路径添加到 BR2_ROOTFS_USERS_TABLES
。BR2_GLOBAL_PATCH_DIR
to board/<manufacturer>/<boardname>/patches/
and add your patches
for each package in a subdirectory named after the package. Each
patch should be called <packagename>-<num>-<description>.patch
.
BR2_GLOBAL_PATCH_DIR
设置为 board/<manufacturer>/<boardname>/patches/
,并为每个软件包添加一个以软件包命名的子目录中的补丁。每个补丁应命名为 <packagename>-<num>-<description>.patch
。BR2_LINUX_KERNEL_PATCH
with as main advantage that it can also
download patches from a URL. If you do not need this,
BR2_GLOBAL_PATCH_DIR
is preferred. U-Boot, Barebox, at91bootstrap
and at91bootstrap3 also have separate options, but these do not
provide any advantage over BR2_GLOBAL_PATCH_DIR
and will likely be
removed in the future.
BR2_LINUX_KERNEL_PATCH
,其主要优势是还可以从 URL 下载补丁。如果您不需要此功能,则更推荐 BR2_GLOBAL_PATCH_DIR
。U-Boot、Barebox、at91bootstrap 和 at91bootstrap3 也有单独的选项,但这些选项与 BR2_GLOBAL_PATCH_DIR
没有任何优势,并且可能会在将来被移除。package/<manufacturer>/
and place your packages in that
directory. Create an overall <manufacturer>.mk
file that
includes the .mk
files of all your packages. Create an overall
Config.in
file that sources the Config.in
files of all your
packages. Include this Config.in
file from Buildroot’s
package/Config.in
file.
package/<manufacturer>/
并将软件包放入该目录。创建一个总体 <manufacturer>.mk
文件,其中包含所有软件包的 .mk
文件。创建一个总体 Config.in
文件,其中包含所有软件包的 Config.in
文件。从 Buildroot 的 package/Config.in
文件中包含此 Config.in
文件。make savedefconfig
to save the buildroot configuration.
make savedefconfig
保存 buildroot 配置。cp defconfig configs/<boardname>_defconfig
This chapter discusses how various things are integrated at system
level. Buildroot is highly configurable, almost everything discussed
here can be changed or overridden by rootfs overlay
or custom skeleton configuration.
本章讨论了系统级别如何集成各种事物。Buildroot 是高度可配置的,几乎这里讨论的所有内容都可以通过 rootfs 叠加或自定义骨架配置进行更改或覆盖。
This chapter describes the decisions taken in Buildroot’s integration of
systemd, and how various use cases can be implemented.
本章描述了 Buildroot 集成 systemd 所做的决定,以及如何实现各种用例。
Systemd requires a DBus daemon. There are two options for it: traditional dbus
(BR2_PACKAGE_DBUS
) and bus1 dbus-broker (BR2_PACKAGE_DBUS_BROKER
). At
least one of them must be chosen. If both are included in the configuration,
dbus-broker will be used as system bus, but the traditional dbus-daemon is
still installed as well and can be used as session bus. Also its tools (e.g.
dbus-send
) can be used (systemd itself has busctl
as an alternative). In
addition, the traditional dbus package is the only one that provides libdbus
,
which is used by many packages as dbus integration library.
Systemd 需要一个 DBus 守护程序。有两个选项可供选择:传统的 dbus( BR2_PACKAGE_DBUS
)和 bus1 dbus-broker( BR2_PACKAGE_DBUS_BROKER
)。必须选择其中至少一个。如果两者都包含在配置中,dbus-broker 将被用作系统总线,但传统的 dbus-daemon 仍然安装,并且可以用作会话总线。此外,它的工具(例如 dbus-send
)可以使用(systemd 本身有 busctl
作为替代)。此外,传统的 dbus 软件包是唯一提供 libdbus
的软件包,许多软件包使用它作为 dbus 集成库。
Both in the dbus and in the dbus-broker case, the daemon runs as user dbus
.
The DBus configuration files are also identical for both.
无论是 dbus 还是 dbus-broker 情况下,守护程序都以用户 dbus
身份运行。两者的 DBus 配置文件也是相同的。
To make sure that only one of the two daemons is started as system bus, the
systemd activation files of the dbus package (dbus.socket
and the
dbus.service
symlink in multi-user.target.wants
) are removed when
dbus-broker is selected.
为了确保只有其中一个守护程序作为系统总线启动,当选择 dbus-broker 时,dbus 软件包的 systemd 激活文件( dbus.socket
和 multi-user.target.wants
中的 dbus.service
符号链接)将被删除。
SELinux is a Linux kernel security module
enforcing access control policies. In addition to the traditional file
permissions and access control lists, SELinux
allows to write rules
for users or processes to access specific functions of resources
(files, sockets…).
SELinux 是一个 Linux 内核安全模块,强制执行访问控制策略。除了传统的文件权限和访问控制列表外, SELinux
允许编写规则,以便用户或进程访问特定资源的功能(文件,套接字...)。
SELinux has three modes of operation:
SELinux 有三种操作模式:
In Buildroot the mode of operation is controlled by the
BR2_PACKAGE_REFPOLICY_POLICY_STATE_*
configuration options. The
Linux kernel also has various configuration options that affect how
SELinux
is enabled (see security/selinux/Kconfig
in the Linux
kernel sources).
在 Buildroot 中,操作模式由 BR2_PACKAGE_REFPOLICY_POLICY_STATE_*
配置选项控制。Linux 内核也有各种配置选项,影响 SELinux
如何启用(请参见 Linux 内核源代码中的 security/selinux/Kconfig
)。
By default in Buildroot the SELinux
policy is provided by the
upstream refpolicy
project, enabled with BR2_PACKAGE_REFPOLICY
.
在 Buildroot 中,默认情况下, SELinux
策略由上游 refpolicy 项目提供,并使用 BR2_PACKAGE_REFPOLICY
启用。
To have proper support for SELinux
in a Buildroot generated system,
the following configuration options must be enabled:
在 Buildroot 生成的系统中正确支持 SELinux
,必须启用以下配置选项:
BR2_PACKAGE_LIBSELINUX
BR2_PACKAGE_REFPOLICY
In addition, your filesystem image format must support extended
attributes.
另外,您的文件系统镜像格式必须支持扩展属性。
The SELinux refpolicy
contains modules that can be enabled or
disabled when being built. Each module provide a number of SELinux
rules. In Buildroot the non-base modules are disabled by default and
several ways to enable such modules are provided:
SELinux refpolicy
包含可以在构建时启用或禁用的模块。每个模块提供一些 SELinux
规则。在 Buildroot 中,默认情况下禁用非基本模块,并提供了几种启用这些模块的方法:
SELinux
modules within the refpolicy
using
the <packagename>_SELINUX_MODULES
variable.
<packagename>_SELINUX_MODULES
变量在 refpolicy
中启用一系列 SELinux
模块。SELinux
modules by putting them (.fc, .if
and .te files) in package/<packagename>/selinux/
.
package/<packagename>/selinux/
中来提供额外的 SELinux
模块。SELinux
modules can be added in directories pointed by the
BR2_REFPOLICY_EXTRA_MODULES_DIRS
configuration option.
BR2_REFPOLICY_EXTRA_MODULES_DIRS
配置选项指向的目录中添加额外的 SELinux
模块。refpolicy
can be enabled if listed in the
BR2_REFPOLICY_EXTRA_MODULES_DEPENDENCIES
configuration option.
BR2_REFPOLICY_EXTRA_MODULES_DEPENDENCIES
配置选项中列出,可以启用 refpolicy
中的附加模块。Buildroot also allows to completely override the refpolicy
. This
allows to provide a full custom policy designed specifically for a
given system. When going this way, all of the above mechanisms are
disabled: no extra SElinux
module is added to the policy, and all
the available modules within the custom policy are enabled and built
into the final binary policy. The custom policy must be a fork of the
official refpolicy.
Buildroot 还允许完全覆盖 refpolicy
。这允许提供一个专门为特定系统设计的完整自定义策略。选择这种方式时,所有上述机制都被禁用:不会向策略添加额外的 SElinux
模块,并且自定义策略中的所有可用模块都会被启用并构建到最终的二进制策略中。自定义策略必须是官方 refpolicy 的分支。
In order to fully override the refpolicy
the following configuration
variables have to be set:
为了完全覆盖 refpolicy
,必须设置以下配置变量:
BR2_PACKAGE_REFPOLICY_CUSTOM_GIT
BR2_PACKAGE_REFPOLICY_CUSTOM_REPO_URL
BR2_PACKAGE_REFPOLICY_CUSTOM_REPO_VERSION
If the boot process seems to hang after the following messages
(messages not necessarily exactly similar, depending on the list of
packages selected):
如果引导过程在以下消息后似乎挂起(消息可能不完全相似,取决于所选软件包列表):
Freeing init memory: 3972K Initializing random number generator... done. Starting network... Starting dropbear sshd: generating rsa key... generating dsa key... OK
then it means that your system is running, but didn’t start a shell on
the serial console. In order to have the system start a shell on your
serial console, you have to go into the Buildroot configuration, in
System configuration
, modify Run a getty (login prompt) after boot
and set the appropriate port and baud rate in the getty options
submenu. This will automatically tune the /etc/inittab
file of the
generated system so that a shell starts on the correct serial port.
这意味着您的系统正在运行,但未在串行控制台上启动 shell。为了让系统在串行控制台上启动 shell,您必须进入 Buildroot 配置,在 System configuration
中修改 Run a getty (login prompt) after boot
并在 getty options
子菜单中设置适当的端口和波特率。这将自动调整生成系统的 /etc/inittab
文件,以便在正确的串行端口上启动 shell。
It has been decided that support for the native compiler on the
target would be stopped from the Buildroot-2012.11 release because:
决定从 Buildroot-2012.11 版本开始停止对目标设备上本地编译器的支持。原因是:
If you need a compiler on your target anyway, then Buildroot is not
suitable for your purpose. In such case, you need a real
distribution and you should opt for something like:
如果您无论如何需要在目标上使用编译器,则 Buildroot 不适合您的目的。在这种情况下,您需要一个真正的发行版,您应该选择类似于:
Since there is no compiler available on the target (see
Section 11.2, “Why is there no compiler on the target?”), it does not make sense to waste
space with headers or static libraries.
由于目标设备上没有编译器可用(请参见第 11.2 节“为什么目标设备上没有编译器?”),因此在头文件或静态库上浪费空间是没有意义的。
Therefore, those files are always removed from the target since the
Buildroot-2012.11 release.
因此,自 Buildroot-2012.11 版本发布以来,这些文件始终会从目标设备中删除。
Because Buildroot mostly targets small or very small target
hardware with limited resource onboard (CPU, ram, mass-storage), it
does not make sense to waste space with the documentation data.
因为 Buildroot 主要针对具有有限资源(CPU、内存、大容量存储)的小型或非常小型目标硬件,因此在文档数据中浪费空间是没有意义的。
If you need documentation data on your target anyway, then Buildroot
is not suitable for your purpose, and you should look for a real
distribution (see: Section 11.2, “Why is there no compiler on the target?”).
如果您无论如何需要目标上的文档数据,则 Buildroot 不适合您的目的,您应该寻找一个真正的发行版(参见:第 11.2 节,“为什么目标上没有编译器?”)。
If a package exists in the Buildroot tree and does not appear in the
config menu, this most likely means that some of the package’s
dependencies are not met.
如果在 Buildroot 树中存在一个软件包,但在配置菜单中找不到它,这很可能意味着一些软件包的依赖关系没有满足。
To know more about the dependencies of a package, search for the
package symbol in the config menu (see Section 8.1, “make tips”).
要了解软件包的依赖关系,请在配置菜单中搜索软件包符号(参见第 8.1 节“make tips”)。
Then, you may have to recursively enable several options (which
correspond to the unmet dependencies) to finally be able to select
the package.
然后,您可能需要递归启用几个选项(对应于未满足的依赖关系),最终才能选择该软件包。
If the package is not visible due to some unmet toolchain options,
then you should certainly run a full rebuild (see Section 8.1, “make tips” for
more explanations).
如果由于某些未满足的工具链选项而导致软件包不可见,则您应该确保进行完整重建(有关更多解释,请参见第 8.1 节“make tips”)。
There are plenty of reasons to not use the target directory a chroot
one, among these:
有很多理由不将目标目录用作 chroot 目录之一,其中包括:
For these reasons, commands run through chroot, using the target
directory as the new root, will most likely fail.
出于这些原因,通过 chroot 在目标目录上运行的命令很可能会失败。
If you want to run the target filesystem inside a chroot, or as an NFS
root, then use the tarball image generated in images/
and extract it
as root.
如果您想在 chroot 内运行目标文件系统,或者作为 NFS 根目录,则使用 images/
生成的 tarball 映像,并将其提取为 root。
One feature that is often discussed on the Buildroot list is the
general topic of "package management". To summarize, the idea
would be to add some tracking of which Buildroot package installs
what files, with the goals of:
在 Buildroot 列表中经常讨论的一个功能是“软件包管理”的一般主题。 总结一下,想法是添加一些跟踪哪个 Buildroot 软件包安装了哪些文件,目标是:
In general, most people think it is easy to do: just track which package
installed what and remove it when the package is unselected. However, it
is much more complicated than that:
一般来说,大多数人认为这很容易实现:只需跟踪哪个软件包安装了什么,并在取消选择软件包时将其删除。然而,事实要比这复杂得多:
target/
directory, but also the sysroot in
host/<tuple>/sysroot
and the host/
directory itself. All files
installed in those directories by various packages must be tracked.
target/
目录,还有 host/<tuple>/sysroot
中的 sysroot 和 host/
目录本身。各种软件包在这些目录中安装的所有文件都必须被跟踪。For all these reasons, the conclusion is that adding tracking of
installed files to remove them when the package is unselected, or to
generate a repository of binary packages, is something that is very
hard to achieve reliably and will add a lot of complexity.
出于所有这些原因,结论是,添加对已安装文件的跟踪以在取消选择软件包时删除它们,或生成二进制软件包存储库,是一项非常难以可靠实现并将增加大量复杂性的工作。
On this matter, the Buildroot developers make this position statement:
在这个问题上,Buildroot 开发人员发表了这一立场声明:
Since Buildroot often involves doing full rebuilds of the entire
system that can be quite long, we provide below a number of tips to
help reduce the build time:
由于 Buildroot 经常涉及对整个系统进行完全重建,这可能需要相当长的时间,因此我们在下面提供了一些提示,以帮助减少构建时间:
ccache
compiler cache (see: Section 8.13.3, “Using ccache
in Buildroot”);
ccache
编译器缓存(参见:第 8.13.3 节,“在 Buildroot 中使用 ccache
”);There are multiple situations to consider:
有多种情况需要考虑:
time_t
has
always been 64-bit.
time_t
一直是 64 位的。
On 32-bit architectures, the situation depends on the C library:
在 32 位架构上,情况取决于 C 库:
time_t
on
32-bit architectures, so systems using uclibc-ng on 32-bit
platforms will not be Y2038 compatible.
time_t
,因此在 32 位平台上使用 uclibc-ng 的系统将不兼容 Y2038。time_t
has always been used on 32-bit
architectures, so systems using musl on 32-bit platforms are
Y2038 compatible.
time_t
,因此在 32 位平台上使用 musl 的系统是 Y2038 兼容的。time_t
on 32-bit architectures is enabled
by the Buildroot option BR2_TIME_BITS_64
. With this option
enabled, systems using glibc on 32-bit platforms are Y2038
compatible.
time_t
是通过 Buildroot 选项 BR2_TIME_BITS_64
实现的。启用此选项后,使用 glibc 在 32 位平台上的系统是 Y2038 兼容的。Note that the above only comments about the capabilities of the C
library. Individual user-space libraries or applications, even when
built in a Y2038-compatible setup, can exhibit incorrect behavior if
they do not make correct use of the time APIs and types.
请注意,上述仅评论了 C 库的功能。即使在 Y2038 兼容的设置中构建,单独的用户空间库或应用程序如果未正确使用时间 API 和类型,则可能表现出不正确的行为。
BR2_TARGET_LDFLAGS
if such options contain a $
sign. For example, the following is known
to break: BR2_TARGET_LDFLAGS="-Wl,-rpath='$ORIGIN/../lib'"
$
符号,则无法通过 BR2_TARGET_LDFLAGS
传递额外的链接器选项。 例如,已知以下内容会中断: BR2_TARGET_LDFLAGS="-Wl,-rpath='$ORIGIN/../lib'"
libffi
package is not supported on the SuperH 2 and ARMv7-M
architectures.
libffi
软件包不支持 SuperH 2 和 ARMv7-M 架构。prboom
package triggers a compiler failure with the SuperH 4
compiler from Sourcery CodeBench, version 2012.09.
prboom
软件包会导致 Sourcery CodeBench 2012.09 版本的 SuperH 4 编译器编译失败。All of the end products of Buildroot (toolchain, root filesystem, kernel,
bootloaders) contain open source software, released under various licenses.
Buildroot 的所有最终产品(工具链、根文件系统、内核、引导加载程序)都包含在各种许可下发布的开源软件。
Using open source software gives you the freedom to build rich embedded
systems, choosing from a wide range of packages, but also imposes some
obligations that you must know and honour.
Some licenses require you to publish the license text in the documentation of
your product. Others require you to redistribute the source code of the
software to those that receive your product.
使用开源软件使您能够构建丰富的嵌入式系统,可以从各种软件包中进行选择,但也会施加一些您必须了解和遵守的义务。一些许可证要求您在产品文档中发布许可证文本。其他许可证要求您向接收您产品的人重新分发软件的源代码。
The exact requirements of each license are documented in each package, and
it is your responsibility (or that of your legal office) to comply with those
requirements.
To make this easier for you, Buildroot can collect for you some material you
will probably need. To produce this material, after you have configured
Buildroot with make menuconfig
, make xconfig
or make gconfig
, run:
每个许可证的具体要求都记录在每个软件包中,您有责任(或您的法律部门有责任)遵守这些要求。为了让您更容易做到这一点,Buildroot 可以为您收集您可能需要的一些材料。要生成这些材料,请在使用 make menuconfig
、 make xconfig
或 make gconfig
配置了 Buildroot 之后运行:
make legal-info
Buildroot will collect legally-relevant material in your output directory,
under the legal-info/
subdirectory.
There you will find:
Buildroot 将在您的输出目录中的 legal-info/
子目录下收集与法律相关的材料。在那里您会找到:
README
file, that summarizes the produced material and contains warnings
about material that Buildroot could not produce.
README
文件,总结了生成的材料,并包含有关 Buildroot 无法生成的材料的警告。buildroot.config
: this is the Buildroot configuration file that is usually
produced with make menuconfig
, and which is necessary to reproduce the
build.
buildroot.config
:这是通常与 make menuconfig
一起生成的 Buildroot 配置文件,是重现构建所必需的。sources/
and
host-sources/
subdirectories for target and host packages respectively.
The source code for packages that set <PKG>_REDISTRIBUTE = NO
will not be
saved.
Patches that were applied are also saved, along with a file named series
that lists the patches in the order they were applied. Patches are under the
same license as the files that they modify.
Note: Buildroot applies additional patches to Libtool scripts of
autotools-based packages. These patches can be found under
support/libtool
in the Buildroot source and, due to technical
limitations, are not saved with the package sources. You may need to
collect them manually.
sources/
和 host-sources/
子目录中。不保存设置了 <PKG>_REDISTRIBUTE = NO
的软件包的源代码。还保存了应用的补丁,以及一个名为 series
的文件,其中列出了按顺序应用的补丁。补丁的许可与它们修改的文件相同。注意:Buildroot 对基于 autotools 的软件包的 Libtool 脚本应用了额外的补丁。这些补丁可以在 Buildroot 源代码的 support/libtool
中找到,并且由于技术限制,不会与软件包源代码一起保存。您可能需要手动收集它们。licenses/
and host-licenses/
subdirectories for target and host packages respectively.
If the license file(s) are not defined in Buildroot, the file is not produced
and a warning in the README
indicates this.
licenses/
和 host-licenses/
子目录中。如果许可证文件未在 Buildroot 中定义,则不会生成该文件,并且 README
中的警告会指示此情况。Please note that the aim of the legal-info
feature of Buildroot is to
produce all the material that is somehow relevant for legal compliance with the
package licenses. Buildroot does not try to produce the exact material that
you must somehow make public. Certainly, more material is produced than is
needed for a strict legal compliance. For example, it produces the source code
for packages released under BSD-like licenses, that you are not required to
redistribute in source form.
请注意,Buildroot 的 legal-info
功能的目的是生成所有与软件包许可证合规性相关的材料。Buildroot 不会尝试生成您必须公开的确切材料。当然,生成的材料比严格的法律合规性所需的要多。例如,它会生成以类似 BSD 许可证发布的软件包的源代码,而您并非必须以源代码形式重新分发。
Moreover, due to technical limitations, Buildroot does not produce some
material that you will or may need, such as the toolchain source code for
some of the external toolchains and the Buildroot source code itself.
When you run make legal-info
, Buildroot produces warnings in the README
file to inform you of relevant material that could not be saved.
此外,由于技术限制,Buildroot 不会生成您将需要或可能需要的一些材料,例如某些外部工具链的工具链源代码以及 Buildroot 源代码本身。当您运行 make legal-info
时,Buildroot 会在 README
文件中生成警告,通知您无法保存的相关材料。
Finally, keep in mind that the output of make legal-info
is based on
declarative statements in each of the packages recipes. The Buildroot
developers try to do their best to keep those declarative statements as
accurate as possible, to the best of their knowledge. However, it is very
well possible that those declarative statements are not all fully accurate
nor exhaustive. You (or your legal department) have to check the output
of make legal-info
before using it as your own compliance delivery. See
the NO WARRANTY clauses (clauses 11 and 12) in the COPYING
file at the
root of the Buildroot distribution.
最后,请记住, make legal-info
的输出是基于每个软件包配方中的声明性语句。Buildroot 开发人员尽力使这些声明性语句尽可能准确,尽其所知。然而,这些声明性语句可能并非全部完全准确或详尽。在将其用作您自己的合规交付之前,您(或您的法律部门)必须检查 make legal-info
的输出。请参阅 Buildroot 发行版根目录下的 COPYING
文件中的无担保条款(第 11 和 12 条款)。
Buildroot itself is an open source software, released under the
GNU General
Public License, version 2 or (at your option) any later version, with
the exception of the package patches detailed below.
However, being a build system, it is not normally part of the end product:
if you develop the root filesystem, kernel, bootloader or toolchain for a
device, the code of Buildroot is only present on the development machine, not
in the device storage.
Buildroot
本身是一款开源软件,根据 GNU 通用公共许可证第 2
版或(根据您的选择)任何更新版本发布,除了下面详细说明的软件包补丁。然而,作为构建系统,它通常不是最终产品的一部分:如果您为设备开发根文件系统、
内核、引导加载程序或工具链,则 Buildroot 的代码仅存在于开发机器上,而不在设备存储中。
Nevertheless, the general view of the Buildroot developers is that you should
release the Buildroot source code along with the source code of other packages
when releasing a product that contains GPL-licensed software.
This is because the
GNU GPL
defines the "complete source code" for an executable work as "all the
source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation
of the executable".
Buildroot is part of the scripts used to control compilation and
installation of the executable, and as such it is considered part of the
material that must be redistributed.
然
而,Buildroot 开发人员的普遍观点是,在发布包含 GPL 许可软件的产品时,应该连同其他软件包的源代码一起发布 Buildroot
源代码。这是因为 GNU GPL
将可执行作品的“完整源代码”定义为“它包含的所有模块的所有源代码,以及任何相关的接口定义文件,以及用于控制可执行文件的编译和安装的脚本”。
Buildroot 是用于控制可执行文件的编译和安装的脚本的一部分,因此被视为必须重新分发的材料的一部分。
Keep in mind that this is only the Buildroot developers' opinion, and you
should consult your legal department or lawyer in case of any doubt.
请记住,这仅代表 Buildroot 开发人员的观点,如果有任何疑问,您应该咨询您的法律部门或律师。
Buildroot also bundles patch files, which are applied to the sources
of the various packages. Those patches are not covered by the license
of Buildroot. Instead, they are covered by the license of the software
to which the patches are applied. When said software is available
under multiple licenses, the Buildroot patches are only provided under
the publicly accessible licenses.
Buildroot 还捆绑了补丁文件,这些补丁文件会应用到各种软件包的源代码中。这些补丁不受 Buildroot 许可证的覆盖。相反,它们受到应用补丁的软件许可证的覆盖。当所述软件在多个许可证下可用时,Buildroot 补丁仅在公开可访问的许可证下提供。
See Chapter 19, Patching a package for the technical details.
有关技术细节,请参阅第 19 章“打补丁”。
To achieve NFS-boot, enable tar root filesystem in the Filesystem
images menu.
要实现 NFS 启动,请在文件系统镜像菜单中启用 tar 根文件系统。
After a complete build, just run the following commands to setup the
NFS-root directory:
在完成构建后,只需运行以下命令来设置 NFS 根目录:
sudo tar -xavf /path/to/output_dir/rootfs.tar -C /path/to/nfs_root_dir
Remember to add this path to /etc/exports
.
记得将此路径添加到 /etc/exports
。
Then, you can execute a NFS-boot from your target.
然后,您可以从目标设备执行 NFS 引导。
To build a live CD image, enable the iso image option in the
Filesystem images menu. Note that this option is only available on
the x86 and x86-64 architectures, and if you are building your kernel
with Buildroot.
要构建一个 Live CD 映像,请在文件系统映像菜单中启用 iso 映像选项。请注意,此选项仅适用于 x86 和 x86-64 架构,并且仅在使用 Buildroot 构建内核时才可用。
You can build a live CD image with either IsoLinux, Grub or Grub 2 as
a bootloader, but only Isolinux supports making this image usable both
as a live CD and live USB (through the Build hybrid image option).
您可以使用 IsoLinux、Grub 或 Grub 2 作为引导加载程序构建 Live CD 映像,但只有 Isolinux 支持使此映像既可用作 Live CD 又可用作 Live USB(通过构建混合映像选项)。
You can test your live CD image using QEMU:
您可以使用 QEMU 测试您的 Live CD 映像:
qemu-system-i386 -cdrom output/images/rootfs.iso9660
Or use it as a hard-drive image if it is a hybrid ISO:
如果是混合 ISO,则可以将其用作硬盘映像:
qemu-system-i386 -hda output/images/rootfs.iso9660
It can be easily flashed to a USB drive with dd
:
它可以使用 dd
轻松刷写到 USB 驱动器中:
dd if=output/images/rootfs.iso9660 of=/dev/sdb
If you want to chroot in a generated image, then there are few thing
you should be aware of:
如果您想在生成的映像中进行 chroot,则有一些事情您应该注意:
qemu-*
binary and correctly set it
within the binfmt
properties to be able to run the binaries built
for the target on your host machine;
qemu-*
二进制文件,并在 binfmt
属性中正确设置它,以便能够在主机上运行为目标构建的二进制文件;host-qemu
and binfmt
correctly built and set for that kind of use.
host-qemu
和 binfmt
。As mentioned above, Buildroot is basically a set of Makefiles that
download, configure, and compile software with the correct options. It
also includes patches for various software packages - mainly the ones
involved in the cross-compilation toolchain (gcc
, binutils
and
uClibc
).
如上所述,Buildroot 基本上是一组 Makefile,用于下载、配置和编译具有正确选项的软件。它还包括各种软件包的补丁 - 主要是与交叉编译工具链( gcc
, binutils
和 uClibc
)有关的软件包。
There is basically one Makefile per software package, and they are
named with the .mk
extension. Makefiles are split into many different
parts.
每个软件包基本上都有一个 Makefile,并且它们的名称带有 .mk
扩展名。Makefile 被分成许多不同的部分。
toolchain/
directory contains the Makefiles
and associated files for all software related to the
cross-compilation toolchain: binutils
, gcc
, gdb
,
kernel-headers
and uClibc
.
toolchain/
" 目录包含了与交叉编译工具链相关的所有软件的 Makefiles 和相关文件: binutils
, gcc
, gdb
, kernel-headers
和 uClibc
。arch/
directory contains the definitions for all the processor
architectures that are supported by Buildroot.
arch/
" 目录包含了 Buildroot 支持的所有处理器架构的定义。package/
directory contains the Makefiles and
associated files for all user-space tools and libraries that Buildroot
can compile and add to the target root filesystem. There is one
sub-directory per package.
package/
" 目录包含了 Buildroot 可以编译并添加到目标根文件系统中的所有用户空间工具和库的 Makefiles 和相关文件。每个软件包都有一个子目录。linux/
directory contains the Makefiles and associated files for
the Linux kernel.
linux/
" 目录包含 Linux 内核的 Makefiles 和相关文件。boot/
directory contains the Makefiles and associated files for
the bootloaders supported by Buildroot.
boot/
" 目录包含 Buildroot 支持的引导加载程序的 Makefiles 和相关文件。system/
directory contains support for system integration, e.g.
the target filesystem skeleton and the selection of an init system.
system/
" 目录包含系统集成支持,例如目标文件系统骨架和初始化系统的选择。fs/
directory contains the Makefiles and
associated files for software related to the generation of the
target root filesystem image.
fs/
" 目录包含了与生成目标根文件系统镜像相关的软件的 Makefiles 和相关文件。Each directory contains at least 2 files:
每个目录至少包含 2 个文件:
something.mk
is the Makefile that downloads, configures,
compiles and installs the package something
.
something.mk
" 是下载、配置、编译和安装软件包 " something
" 的 Makefile。Config.in
is a part of the configuration tool
description file. It describes the options related to the
package.
Config.in
是配置工具描述文件的一部分。它描述与软件包相关的选项。The main Makefile performs the following steps (once the
configuration is done):
主 Makefile 在配置完成后执行以下步骤:
staging
, target
, build
,
etc. in the output directory (output/
by default,
another value can be specified using O=
)
staging
, target
, build
等(默认为 output/
,也可以使用 O=
指定另一个值)TARGETS
variable. This
variable is filled by all the individual components'
Makefiles. Generating these targets will trigger the compilation of
the userspace packages (libraries, programs), the kernel, the
bootloader and the generation of the root filesystem images,
depending on the configuration.
TARGETS
变量中列出的所有目标。此变量由所有单独组件的 Makefile 填充。生成这些目标将触发用户空间软件包(库、程序)、内核、引导加载程序的编译以及根文件系统映像的生成,具体取决于配置。Overall, these coding style rules are here to help you to add new files in
Buildroot or refactor existing ones.
总的来说,这些编码风格规则旨在帮助您在 Buildroot 中添加新文件或重构现有文件。
If you slightly modify some existing file, the important thing is
to keep the consistency of the whole file, so you can:
如果您稍微修改了一些现有文件,重要的是保持整个文件的一致性,这样您就可以:
Config.in
files contain entries for almost anything configurable in
Buildroot.
Config.in
文件包含几乎在 Buildroot 中可配置的所有内容的条目。
An entry has the following pattern:
条目具有以下模式:
config BR2_PACKAGE_LIBFOO bool "libfoo" depends on BR2_PACKAGE_LIBBAZ select BR2_PACKAGE_LIBBAR help This is a comment that explains what libfoo is. The help text should be wrapped. http://foosoftware.org/libfoo/
bool
, depends on
, select
and help
lines are indented
with one tab.
bool
、 depends on
、 select
和 help
行缩进一个制表符。The Config.in
files are the input for the configuration tool
used in Buildroot, which is the regular Kconfig. For further
details about the Kconfig language, refer to
http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt.
Config.in
文件是 Buildroot 中使用的配置工具的输入,该工具是常规的 Kconfig。有关 Kconfig 语言的更多详细信息,请参阅
http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt。
Header: The file starts with a header. It contains the module name,
preferably in lowercase, enclosed between separators made of 80 hashes. A
blank line is mandatory after the header:
头部:文件以头部开始。它包含模块名称,最好是小写,位于由 80 个井号制成的分隔符之间。头部之后必须有一个空行:
################################################################################ # # libfoo # ################################################################################
Assignment: use =
preceded and followed by one space:
赋值:使用 =
,前后各有一个空格:
LIBFOO_VERSION = 1.0 LIBFOO_CONF_OPTS += --without-python-support
Do not align the =
signs.
不要对齐 =
标记。
Indentation: use tab only:
缩进:只使用制表符:
define LIBFOO_REMOVE_DOC $(RM) -r $(TARGET_DIR)/usr/share/libfoo/doc \ $(TARGET_DIR)/usr/share/man/man3/libfoo* endef
Note that commands inside a define
block should always start with a tab,
so make recognizes them as commands.
请注意, define
块内部的命令应始终以制表符开头,以便 make 将其识别为命令。
Optional dependency: 可选依赖项:
Prefer multi-line syntax.
更喜欢多行语法。
YES: 是:
ifeq ($(BR2_PACKAGE_PYTHON3),y) LIBFOO_CONF_OPTS += --with-python-support LIBFOO_DEPENDENCIES += python3 else LIBFOO_CONF_OPTS += --without-python-support endif
NO:
LIBFOO_CONF_OPTS += --with$(if $(BR2_PACKAGE_PYTHON3),,out)-python-support LIBFOO_DEPENDENCIES += $(if $(BR2_PACKAGE_PYTHON3),python3,)
Optional hooks: keep hook definition and assignment together in one
if block.
可选钩子:将钩子定义和分配保持在一个 if 块中。
YES: 是:
ifneq ($(BR2_LIBFOO_INSTALL_DATA),y) define LIBFOO_REMOVE_DATA $(RM) -r $(TARGET_DIR)/usr/share/libfoo/data endef LIBFOO_POST_INSTALL_TARGET_HOOKS += LIBFOO_REMOVE_DATA endif
NO:
define LIBFOO_REMOVE_DATA $(RM) -r $(TARGET_DIR)/usr/share/libfoo/data endef ifneq ($(BR2_LIBFOO_INSTALL_DATA),y) LIBFOO_POST_INSTALL_TARGET_HOOKS += LIBFOO_REMOVE_DATA endif
genimage.cfg
files contain the output image layout that genimage utility
uses to create final .img file.
genimage.cfg
个文件包含 genimage 实用程序用于创建最终 .img 文件的输出图像布局。
An example follows: 以下是一个示例:
image efi-part.vfat { vfat { file EFI { image = "efi-part/EFI" } file Image { image = "Image" } } size = 32M } image sdimage.img { hdimage { } partition u-boot { image = "efi-part.vfat" offset = 8K } partition root { image = "rootfs.ext2" size = 512M } }
section
(i.e. hdimage, vfat etc.), partition
must be indented
with one tab.
section
(即 hdimage、vfat 等), partition
必须缩进一个制表符。file
or other subnode
must be indented with two tabs.
file
或其他 subnode
都必须缩进两个制表符。section
, partition
, file
, subnode
) must have an open
curly bracket on the same line of the node’s name, while the closing one
must be on a newline and after it a newline must be added except for the
last one node. Same goes for its option, for example option size
=
.
section
, partition
, file
, subnode
)的开放大括号必须在节点名称的同一行上,而关闭大括号必须在新行上,并在其后添加一个换行符,除了最后一个节点外。对于其选项也是一样,例如选项 size
=
。option
(i.e. image
, offset
, size
) must have the =
assignment one space from it and one space from the value specified.
option
(即 image
, offset
, size
)必须将 =
赋值与其之间各有一个空格。offset
and size
options are: G
, M
, K
(not k
). If it’s not possible to express a precise byte count
with notations above then use hexadecimal 0x
prefix or, as last
chance, the byte count. In comments instead use GB
, MB
, KB
(not kb
) in place of G
, M
, K
.
offset
和 size
选项的允许表示法为: G
, M
, K
(不是 k
)。如果使用上述表示法无法准确表示字节计数,则使用十六进制 0x
前缀,或者作为最后一种选择,使用字节计数。在注释中,应该使用 G
, M
, K
的位置,而不是 GB
, MB
, KB
(不是 kb
)。partition-type-uuid
value must be U
for
the EFI System Partition (expanded to
c12a7328-f81f-11d2-ba4b-00a0c93ec93b
by genimage), F
for a FAT
partition (expanded to ebd0a0a2-b9e5-4433-87c0-68b6b72699c7
by
genimage) or L
for the root filesystem or other filesystems
(expanded to 0fc63daf-8483-4772-8e79-3d69d8477de4
by
genimage). Even though L
is the default value of genimage, we
prefer to have it explicitly specified in our genimage.cfg
files. Finally, these shortcuts should be used without double
quotes, e.g partition-type-uuid = U
. If an explicit GUID is
specified, lower-case letters should be used.
partition-type-uuid
值必须为 EFI 系统分区(由 genimage 扩展到 c12a7328-f81f-11d2-ba4b-00a0c93ec93b
)、FAT 分区(由 genimage 扩展到 ebd0a0a2-b9e5-4433-87c0-68b6b72699c7
)或根文件系统或其他文件系统(由 genimage 扩展到 0fc63daf-8483-4772-8e79-3d69d8477de4
)的 F
值。尽管 L
是 genimage 的默认值,但我们更喜欢在我们的 genimage.cfg
文件中明确指定它。最后,这些快捷方式应该在没有双引号的情况下使用,例如 partition-type-uuid = U
。如果指定了明确的 GUID,则应使用小写字母。The genimage.cfg
files are the input for the genimage tool used in
Buildroot to generate the final image file(i.e. sdcard.img). For further
details about the genimage language, refer to
https://github.com/pengutronix/genimage/blob/master/README.rst.
genimage.cfg
文件是 Buildroot 中用于生成最终镜像文件(即 sdcard.img)的 genimage 工具的输入。有关 genimage
语言的更多详细信息,请参阅
https://github.com/pengutronix/genimage/blob/master/README.rst。
The documentation uses the
asciidoc format.
文档使用 asciidoc 格式。
For further details about the asciidoc syntax, refer to
https://asciidoc-py.github.io/userguide.html.
有关 asciidoc 语法的更多详细信息,请参阅 https://asciidoc-py.github.io/userguide.html。
Some scripts in the support/
and utils/
directories are written in
Python and should follow the
PEP8 Style Guide for Python Code.
support/
和 utils/
目录中的一些脚本是用 Python 编写的,应遵循 Python 代码的 PEP8 风格指南。
Buildroot contains basic configurations for several publicly available
hardware boards, so that users of such a board can easily build a system
that is known to work. You are welcome to add support for other boards
to Buildroot too.
Buildroot 包含了几个公开可用硬件板的基本配置,以便这些板的用户可以轻松构建已知可用的系统。欢迎您也向 Buildroot 添加对其他板的支持。
To do so, you need to create a normal Buildroot configuration that
builds a basic system for the hardware: (internal) toolchain, kernel,
bootloader, filesystem and a simple BusyBox-only userspace. No specific
package should be selected: the configuration should be as minimal as
possible, and should only build a working basic BusyBox system for the
target platform. You can of course use more complicated configurations
for your internal projects, but the Buildroot project will only
integrate basic board configurations. This is because package
selections are highly application-specific.
要
做到这一点,您需要创建一个普通的 Buildroot 配置,用于为硬件构建基本系统:(内部)工具链、内核、引导加载程序、文件系统和一个仅包含简单
BusyBox 用户空间的系统。不应选择任何特定的软件包:配置应尽可能简化,并且应仅为目标平台构建一个可工作的基本 BusyBox
系统。当然,您可以为内部项目使用更复杂的配置,但 Buildroot 项目将仅集成基本板配置。这是因为软件包选择高度特定于应用程序。
Once you have a known working configuration, run make
savedefconfig
. This will generate a minimal defconfig
file at the
root of the Buildroot source tree. Move this file into the configs/
directory, and rename it <boardname>_defconfig
. If the configuration
is a bit more complicated, it is nice to manually reformat it and
separate it into sections, with a comment before each section. Typical
sections are Architecture, Toolchain options (typically just linux
headers version), Firmware, Bootloader, Kernel, and Filesystem.
一旦您有一个已知的工作配置,请运行 make
savedefconfig
。这将在 Buildroot 源树的根目录生成一个最小的 defconfig
文件。将此文件移动到 configs/
目录,并将其重命名为 <boardname>_defconfig
。如果配置有点复杂,最好手动重新格式化并将其分成几个部分,并在每个部分之前加上注释。典型的部分包括架构、工具链选项(通常只是 Linux 头文件版本)、固件、引导加载程序、内核和文件系统。
Always use fixed versions or commit hashes for the different
components, not the "latest" version. For example, set
BR2_LINUX_KERNEL_CUSTOM_VERSION=y
and
BR2_LINUX_KERNEL_CUSTOM_VERSION_VALUE
to the kernel version you tested
with.
始终为不同组件使用固定版本或提交哈希值,而不是使用“最新”版本。例如,将 BR2_LINUX_KERNEL_CUSTOM_VERSION=y
和 BR2_LINUX_KERNEL_CUSTOM_VERSION_VALUE
设置为您测试过的内核版本。
It is recommended to use as much as possible upstream versions of the
Linux kernel and bootloaders, and to use as much as possible default
kernel and bootloader configurations. If they are incorrect for your
board, or no default exists, we encourage you to send fixes to the
corresponding upstream projects.
建议尽可能使用 Linux 内核和引导加载程序的上游版本,并尽可能使用默认的内核和引导加载程序配置。如果它们对您的板子不正确,或者没有默认配置存在,我们鼓励您向相应的上游项目发送修复程序。
However, in the mean time, you may want to store kernel or bootloader
configuration or patches specific to your target platform. To do so,
create a directory board/<manufacturer>
and a subdirectory
board/<manufacturer>/<boardname>
. You can then store your patches
and configurations in these directories, and reference them from the main
Buildroot configuration. Refer to Chapter 9, Project-specific customization for more details.
但是,在此期间,您可能希望存储特定于目标平台的内核或引导加载程序配置或补丁。为此,请创建一个目录 board/<manufacturer>
和一个子目录 board/<manufacturer>/<boardname>
。然后,您可以将补丁和配置存储在这些目录中,并从主 Buildroot 配置中引用它们。有关更多详细信息,请参阅第 9 章“项目特定定制”。
Before submitting patches for new boards it is recommended to test it by
building it using latest gitlab-CI docker container. To do this use
utils/docker-run
script and inside it issue these commands:
在为新板提交补丁之前,建议使用最新的 gitlab-CI docker 容器构建并测试它。要做到这一点,请使用 utils/docker-run
脚本,并在其中发出以下命令:
$ make <boardname>_defconfig $ make
By default, Buildroot developers use the official image hosted on the
gitlab.com
registry and it should be convenient for most usage. If you still want
to build your own docker image, you can base it off the official image
as the FROM
directive of your own Dockerfile:
默认情况下,Buildroot 开发人员使用托管在 gitlab.com 注册表上的官方映像,这对大多数用途应该很方便。如果您仍然想构建自己的 docker 映像,可以将其基于官方映像作为您自己 Dockerfile 的 FROM
指令:
FROM registry.gitlab.com/buildroot.org/buildroot/base:YYYYMMDD.HHMM RUN ... COPY ...
The current version YYYYMMDD.HHMM can be found in the .gitlab-ci.yml
file at the top of the Buildroot source tree; all past versions are
listed in the aforementioned registry as well.
当前版本 YYYYMMDD.HHMM 可以在 Buildroot 源代码树顶部的 .gitlab-ci.yml
文件中找到;所有过去的版本也在上述注册表中列出。
This section covers how new packages (userspace libraries or
applications) can be integrated into Buildroot. It also shows how
existing packages are integrated, which is needed for fixing issues or
tuning their configuration.
本节介绍如何将新软件包(用户空间库或应用程序)集成到 Buildroot 中。它还展示了如何集成现有软件包,这对于修复问题或调整其配置是必要的。
When you add a new package, be sure to test it in various conditions
(see Section 18.25.3, “How to test your package”) and also check it for coding style (see
Section 18.25.2, “How to check the coding style”).
当您添加新软件包时,请务必在各种条件下进行测试(请参阅第 18.25.3 节“如何测试您的软件包”),并检查其编码风格(请参阅第 18.25.2 节“如何检查编码风格”)。
First of all, create a directory under the package
directory for
your software, for example libfoo
.
首先,在 package
目录下为您的软件创建一个目录,例如 libfoo
。
Some packages have been grouped by topic in a sub-directory:
x11r7
, qt5
and gstreamer
. If your package fits in
one of these categories, then create your package directory in these.
New subdirectories are discouraged, however.
一些软件包已按主题分组到子目录中: x11r7
, qt5
和 gstreamer
。如果您的软件包属于这些类别之一,请在这些类别中创建您的软件包目录。不过,不鼓励创建新的子目录。
For the package to be displayed in the configuration tool, you need to
create a Config file in your package directory. There are two types:
Config.in
and Config.in.host
.
要在配置工具中显示软件包,您需要在软件包目录中创建一个配置文件。有两种类型: Config.in
和 Config.in.host
。
For packages used on the target, create a file named Config.in
. This
file will contain the option descriptions related to our libfoo
software
that will be used and displayed in the configuration tool. It should basically
contain:
对于在目标上使用的软件包,请创建一个名为 Config.in
的文件。该文件将包含与我们的 libfoo
软件相关的选项描述,这些选项将在配置工具中使用和显示。它基本上应包含:
config BR2_PACKAGE_LIBFOO bool "libfoo" help This is a comment that explains what libfoo is. The help text should be wrapped. http://foosoftware.org/libfoo/
The bool
line, help
line and other metadata information about the
configuration option must be indented with one tab. The help text
itself should be indented with one tab and two spaces, lines should
be wrapped to fit 72 columns, where tab counts for 8, so 62 characters
in the text itself. The help text must mention the upstream URL of the
project after an empty line.
配置选项的 bool
行、 help
行和其他元数据信息必须缩进一个制表符。帮助文本本身应缩进一个制表符和两个空格,行应换行以适应 72 列,其中制表符占 8,因此文本本身为 62 个字符。帮助文本必须在空行后提及项目的上游 URL。
As a convention specific to Buildroot, the ordering of the attributes
is as follows:
作为 Buildroot 特定的约定,属性的顺序如下:
bool
, string
… with the prompt
bool
, string
...与提示default
value(s)
default
值(s)depends on
form
depends on
形式depends on
form
depends on
形式depends on
form
depends on
形式select
form
select
表单的依赖项You can add other sub-options into a if BR2_PACKAGE_LIBFOO…endif
statement to configure particular things in your software. You can look at
examples in other packages. The syntax of the Config.in
file is the same
as the one for the kernel Kconfig file. The documentation for this syntax is
available at http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt
您可以将其他子选项添加到 if BR2_PACKAGE_LIBFOO…endif
语句中,以配置软件中的特定内容。您可以查看其他软件包中的示例。 Config.in
文件的语法与内核 Kconfig 文件的语法相同。有关此语法的文档,请访问 http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt
Finally you have to add your new libfoo/Config.in
to
package/Config.in
(or in a category subdirectory if you decided to
put your package in one of the existing categories). The files
included there are sorted alphabetically per category and are NOT
supposed to contain anything but the bare name of the package.
最后,您必须将您的新 libfoo/Config.in
添加到 package/Config.in
(或者如果您决定将您的软件包放在现有类别之一中,则添加到类别子目录中)。那里包含的文件按类别按字母顺序排列,除了软件包的纯名称之外不应包含任何内容。
source "package/libfoo/Config.in"
Some packages also need to be built for the host system. There are two
options here:
有些软件包还需要为主机系统构建。这里有两个选项:
host-foo
to the target package’s BAR_DEPENDENCIES
variable. No
Config.in.host
file should be created.
host-foo
添加到目标软件包的 BAR_DEPENDENCIES
变量中。不应创建 Config.in.host
文件。
The host package should be explicitly selectable by the user from
the configuration menu. In this case, create a Config.in.host
file
for that host package:
主机软件包应由用户从配置菜单中明确选择。在这种情况下,为该主机软件包创建一个 Config.in.host
文件:
config BR2_PACKAGE_HOST_FOO bool "host foo" help This is a comment that explains what foo for the host is. http://foosoftware.org/foo/
The same coding style and options as for the Config.in
file are valid.
与 Config.in
文件相同的编码风格和选项是有效的。
Finally you have to add your new libfoo/Config.in.host
to
package/Config.in.host
. The files included there are sorted alphabetically
and are NOT supposed to contain anything but the bare name of the package.
最后,您必须将您的新 libfoo/Config.in.host
添加到 package/Config.in.host
中。那里包含的文件是按字母顺序排列的,除了包的基本名称之外不应包含任何内容。
source "package/foo/Config.in.host"
The host package will then be available from the Host utilities
menu.
然后,主机包将从 Host utilities
菜单中可用。
The Config.in
file of your package must also ensure that
dependencies are enabled. Typically, Buildroot uses the following
rules:
您的软件包的 Config.in
文件还必须确保依赖项已启用。通常,Buildroot 使用以下规则:
select
type of dependency for dependencies on
libraries. These dependencies are generally not obvious and it
therefore make sense to have the kconfig system ensure that the
dependencies are selected. For example, the libgtk2 package uses
select BR2_PACKAGE_LIBGLIB2
to make sure this library is also
enabled.
The select
keyword expresses the dependency with a backward
semantic.
select
类型的依赖项。这些依赖通常不明显,因此让 kconfig 系统确保选择了依赖项是有意义的。例如,libgtk2 软件包使用 select BR2_PACKAGE_LIBGLIB2
来确保该库也已启用。 select
关键字以反向语义表示依赖关系。depends on
type of dependency when the user really needs to
be aware of the dependency. Typically, Buildroot uses this type of
dependency for dependencies on target architecture, MMU support and
toolchain options (see Section 18.2.4, “Dependencies on target and toolchain options”),
or for dependencies on "big" things, such as the X.org system.
The depends on
keyword expresses the dependency with a forward
semantic.
depends on
类型的依赖项。通常,Buildroot 在目标架构、MMU 支持和工具链选项的依赖项(请参见第 18.2.4 节,“目标和工具链选项的依赖项”)或者对“大”事物的依赖,例如 X.org 系统时使用这种类型的依赖。 depends on
关键字以正向语义表示依赖关系。Note. The current problem with the kconfig language is that these two
dependency semantics are not internally linked. Therefore, it may be
possible to select a package, whom one of its dependencies/requirement
is not met.
注意。Kconfig 语言当前的问题是这两种依赖语义没有内部链接。因此,可能会选择一个包,其中一个依赖/要求未满足。
An example illustrates both the usage of select
and depends on
.
一个示例说明了 select
和 depends on
的用法。
config BR2_PACKAGE_RRDTOOL bool "rrdtool" depends on BR2_USE_WCHAR select BR2_PACKAGE_FREETYPE select BR2_PACKAGE_LIBART select BR2_PACKAGE_LIBPNG select BR2_PACKAGE_ZLIB help RRDtool is the OpenSource industry standard, high performance data logging and graphing system for time series data. http://oss.oetiker.ch/rrdtool/ comment "rrdtool needs a toolchain w/ wchar" depends on !BR2_USE_WCHAR
Note that these two dependency types are only transitive with the
dependencies of the same kind.
请注意,这两种依赖类型只与相同类型的依赖项具有传递性。
This means, in the following example:
这意味着,在以下示例中:
config BR2_PACKAGE_A bool "Package A" config BR2_PACKAGE_B bool "Package B" depends on BR2_PACKAGE_A config BR2_PACKAGE_C bool "Package C" depends on BR2_PACKAGE_B config BR2_PACKAGE_D bool "Package D" select BR2_PACKAGE_B config BR2_PACKAGE_E bool "Package E" select BR2_PACKAGE_D
Package C
will be visible if Package B
has been
selected, which in turn is only visible if Package A
has been
selected.
Package C
,则只有在选择 Package B
后才会显示,而选择 Package B
只有在选择 Package A
后才会显示。Package E
will select Package D
, which will select
Package B
, it will not check for the dependencies of Package B
,
so it will not select Package A
.
Package E
将选择 Package D
,然后选择 Package B
,它不会检查 Package B
的依赖关系,因此不会选择 Package A
。Package B
is selected but Package A
is not, this violates
the dependency of Package B
on Package A
. Therefore, in such a
situation, the transitive dependency has to be added explicitly:
Package B
,但未选择 Package A
,这违反了 Package B
对 Package A
的依赖关系。因此,在这种情况下,必须显式添加传递性依赖:config BR2_PACKAGE_D bool "Package D" depends on BR2_PACKAGE_A select BR2_PACKAGE_B config BR2_PACKAGE_E bool "Package E" depends on BR2_PACKAGE_A select BR2_PACKAGE_D
Overall, for package library dependencies, select
should be
preferred.
总体而言,对于软件包库依赖项,应优先选择 select
。
Note that such dependencies will ensure that the dependency option
is also enabled, but not necessarily built before your package. To do
so, the dependency also needs to be expressed in the .mk
file of the
package.
请注意,这样的依赖关系将确保依赖选项也已启用,但不一定在您的软件包之前构建。为此,依赖项还需要在软件包的 .mk
文件中表达。
Further formatting details: see the
coding style.
更多格式化细节:请参阅编码风格。
Many packages depend on certain options of the toolchain: the choice of
C library, C++ support, thread support, RPC support, wchar support,
or dynamic library support. Some packages can only be built on certain
target architectures, or if an MMU is available in the processor.
许多软件包依赖于工具链的某些选项:C 库的选择,C++支持,线程支持,RPC 支持,wchar 支持或动态库支持。某些软件包只能在特定的目标架构上构建,或者如果处理器中有 MMU 可用。
These dependencies have to be expressed with the appropriate depends
on statements in the Config.in file. Additionally, for dependencies on
toolchain options, a comment
should be displayed when the option is
not enabled, so that the user knows why the package is not available.
Dependencies on target architecture or MMU support should not be
made visible in a comment: since it is unlikely that the user can
freely choose another target, it makes little sense to show these
dependencies explicitly.
这些依赖关系必须在 Config.in 文件中用适当的 depends on 语句来表示。此外,对于工具链选项的依赖关系,在选项未启用时应显示 comment
,以便用户知道为什么包不可用。不应在注释中显示对目标架构或 MMU 支持的依赖关系:因为用户不太可能自由选择另一个目标,因此没有必要明确显示这些依赖关系。
The comment
should only be visible if the config
option itself would
be visible when the toolchain option dependencies are met. This means
that all other dependencies of the package (including dependencies on
target architecture and MMU support) have to be repeated on the
comment
definition. To keep it clear, the depends on
statement for
these non-toolchain option should be kept separate from the depends on
statement for the toolchain options.
If there is a dependency on a config option in that same file (typically
the main package) it is preferable to have a global if … endif
construct rather than repeating the depends on
statement on the
comment and other config options.
当工具链选项的依赖关系得到满足时, comment
应仅在 config
选项本身可见时才可见。这意味着包的所有其他依赖关系(包括对目标架构和 MMU 支持的依赖关系)必须在 comment
定义中重复。为了保持清晰,这些非工具链选项的 depends on
语句应与工具链选项的 depends on
语句分开。如果在同一文件中存在对配置选项的依赖关系(通常是主包),最好使用全局 if … endif
结构,而不是在注释和其他配置选项上重复 depends on
语句。
The general format of a dependency comment
for package foo is:
包 foo 的依赖 comment
的一般格式为:
foo needs a toolchain w/ featA, featB, featC
for example: 例如:
mpd needs a toolchain w/ C++, threads, wchar
or
crda needs a toolchain w/ threads
Note that this text is kept brief on purpose, so that it will fit on a
80-character terminal.
请注意,这段文字故意保持简短,以便适合 80 字符的终端。
The rest of this section enumerates the different target and toolchain
options, the corresponding config symbols to depend on, and the text to
use in the comment.
本节的其余部分列举了不同的目标和工具链选项,相应的配置符号依赖项,以及在注释中使用的文本。
Target architecture 目标架构
BR2_powerpc
, BR2_mips
, … (see arch/Config.in
)
BR2_powerpc
, BR2_mips
, … (参见 arch/Config.in
)MMU support MMU 支持
BR2_USE_MMU
BR2_USE_MMU
Gcc _sync*
built-ins used for atomic operations. They are
available in variants operating on 1 byte, 2 bytes, 4 bytes and 8
bytes. Since different architectures support atomic operations on
different sizes, one dependency symbol is available for each size:
Gcc _sync*
内建函数用于原子操作。它们可用于操作 1 字节、2 字节、4 字节和 8 字节的变体。由于不同的架构支持不同大小的原子操作,因此每个大小都有一个依赖符号可用:
BR2_TOOLCHAIN_HAS_SYNC_1
for 1 byte,
BR2_TOOLCHAIN_HAS_SYNC_2
for 2 bytes,
BR2_TOOLCHAIN_HAS_SYNC_4
for 4 bytes, BR2_TOOLCHAIN_HAS_SYNC_8
for 8 bytes.
BR2_TOOLCHAIN_HAS_SYNC_1
用于 1 字节, BR2_TOOLCHAIN_HAS_SYNC_2
用于 2 字节, BR2_TOOLCHAIN_HAS_SYNC_4
用于 4 字节, BR2_TOOLCHAIN_HAS_SYNC_8
用于 8 字节。
Gcc _atomic*
built-ins used for atomic operations.
用于原子操作的 Gcc _atomic*
内建函数。
BR2_TOOLCHAIN_HAS_ATOMIC
.
BR2_TOOLCHAIN_HAS_ATOMIC
。Kernel headers 内核头文件
BR2_TOOLCHAIN_HEADERS_AT_LEAST_X_Y
, (replace
X_Y
with the proper version, see toolchain/Config.in
)
BR2_TOOLCHAIN_HEADERS_AT_LEAST_X_Y
,(用正确的版本替换 X_Y
,参见 toolchain/Config.in
)headers >= X.Y
and/or headers <= X.Y
(replace
X.Y
with the proper version)
headers >= X.Y
和/或 headers <= X.Y
(用正确的版本替换 X.Y
)GCC version GCC 版本
BR2_TOOLCHAIN_GCC_AT_LEAST_X_Y
, (replace
X_Y
with the proper version, see toolchain/Config.in
)
BR2_TOOLCHAIN_GCC_AT_LEAST_X_Y
,(用正确的版本替换 X_Y
,参见 toolchain/Config.in
)gcc >= X.Y
and/or gcc <= X.Y
(replace
X.Y
with the proper version)
gcc >= X.Y
和/或 gcc <= X.Y
(用正确的版本替换 X.Y
)Host GCC version 主机 GCC 版本
BR2_HOST_GCC_AT_LEAST_X_Y
, (replace
X_Y
with the proper version, see Config.in
)
BR2_HOST_GCC_AT_LEAST_X_Y
,(用正确的版本替换 X_Y
,参见 Config.in
)C library C 库
BR2_TOOLCHAIN_USES_GLIBC
,
BR2_TOOLCHAIN_USES_MUSL
, BR2_TOOLCHAIN_USES_UCLIBC
BR2_TOOLCHAIN_USES_GLIBC
, BR2_TOOLCHAIN_USES_MUSL
, BR2_TOOLCHAIN_USES_UCLIBC
foo needs a glibc toolchain
, or foo needs a glibc
toolchain w/ C++
foo needs a glibc toolchain
, 或 foo needs a glibc
toolchain w/ C++
C++ support C++ 支持
BR2_INSTALL_LIBSTDCPP
BR2_INSTALL_LIBSTDCPP
C++
注释字符串: C++
D support D 支持
BR2_TOOLCHAIN_HAS_DLANG
BR2_TOOLCHAIN_HAS_DLANG
Dlang
注释字符串: Dlang
Fortran support Fortran 支持
BR2_TOOLCHAIN_HAS_FORTRAN
BR2_TOOLCHAIN_HAS_FORTRAN
fortran
注释字符串: fortran
thread support 线程支持
BR2_TOOLCHAIN_HAS_THREADS
BR2_TOOLCHAIN_HAS_THREADS
threads
(unless BR2_TOOLCHAIN_HAS_THREADS_NPTL
is also needed, in which case, specifying only NPTL
is sufficient)
threads
(除非还需要 BR2_TOOLCHAIN_HAS_THREADS_NPTL
,否则仅指定 NPTL
即可)NPTL thread support NPTL 线程支持
BR2_TOOLCHAIN_HAS_THREADS_NPTL
BR2_TOOLCHAIN_HAS_THREADS_NPTL
NPTL
注释字符串: NPTL
RPC support RPC 支持
BR2_TOOLCHAIN_HAS_NATIVE_RPC
BR2_TOOLCHAIN_HAS_NATIVE_RPC
RPC
注释字符串: RPC
wchar support 宽字符支持
BR2_USE_WCHAR
BR2_USE_WCHAR
wchar
注释字符串: wchar
dynamic library 动态库
!BR2_STATIC_LIBS
!BR2_STATIC_LIBS
dynamic library
注释字符串: dynamic library
Some packages need a Linux kernel to be built by buildroot. These are
typically kernel modules or firmware. A comment should be added in the
Config.in file to express this dependency, similar to dependencies on
toolchain options. The general format is:
一些软件包需要使用 Linux 内核由 buildroot 构建。这些通常是内核模块或固件。应在 Config.in 文件中添加注释以表达此依赖关系,类似于对工具链选项的依赖关系。一般格式如下:
foo needs a Linux kernel to be built
If there is a dependency on both toolchain options and the Linux
kernel, use this format:
如果对工具链选项和 Linux 内核都有依赖关系,请使用此格式:
foo needs a toolchain w/ featA, featB, featC and a Linux kernel to be built
If a package needs udev /dev management, it should depend on symbol
BR2_PACKAGE_HAS_UDEV
, and the following comment should be added:
如果一个软件包需要 udev /dev 管理,则应依赖于符号 BR2_PACKAGE_HAS_UDEV
,并添加以下注释:
foo needs udev /dev management
If there is a dependency on both toolchain options and udev /dev
management, use this format:
如果依赖于工具链选项和 udev /dev 管理,则使用以下格式:
foo needs udev /dev management and a toolchain w/ featA, featB, featC
Some features can be provided by more than one package, such as the
openGL libraries.
一些功能可以由多个软件包提供,例如 openGL 库。
See Section 18.12, “Infrastructure for virtual packages” for more on the virtual packages.
有关虚拟软件包的更多信息,请参阅第 18.12 节“虚拟软件包的基础设施”。
Finally, here’s the hardest part. Create a file named libfoo.mk
. It
describes how the package should be downloaded, configured, built,
installed, etc.
最后,这是最困难的部分。创建一个名为 libfoo.mk
的文件。它描述了软件包应如何下载、配置、构建、安装等。
Depending on the package type, the .mk
file must be written in a
different way, using different infrastructures:
根据软件包类型的不同, .mk
文件必须以不同的方式编写,使用不同的基础设施:
flit
, pep517
, setuptools
,
setuptools-rust
or maturin
mechanisms. We cover them through a
tutorial and a
reference.
flit
, pep517
, setuptools
, setuptools-rust
或 maturin
机制的 Python 模块提供了专用基础设施。我们通过教程和参考资料来覆盖它们。Further formatting details: see the writing
rules.
进一步的格式细节:请参阅写作规则。
When possible, you must add a third file, named libfoo.hash
, that
contains the hashes of the downloaded files for the libfoo
package. The only reason for not adding a .hash
file is when hash
checking is not possible due to how the package is downloaded.
在可能的情况下,您必须添加第三个文件,命名为 libfoo.hash
,其中包含 libfoo
软件包的下载文件的哈希值。不添加 .hash
文件的唯一原因是由于软件包的下载方式导致无法进行哈希检查。
When a package has a version selection choice, then the hash file may be
stored in a subdirectory named after the version, e.g.
package/libfoo/1.2.3/libfoo.hash
. This is especially important if the
different versions have different licensing terms, but they are stored
in the same file. Otherwise, the hash file should stay in the package’s
directory.
当软件包有版本选择时,哈希文件可以存储在以版本命名的子目录中,例如 package/libfoo/1.2.3/libfoo.hash
。如果不同版本具有不同的许可条款但存储在同一文件中,则这一点尤为重要。否则,哈希文件应保留在软件包的目录中。
The hashes stored in that file are used to validate the integrity of the
downloaded files and of the license files.
存储在该文件中的哈希用于验证已下载文件和许可文件的完整性。
The format of this file is one line for each file for which to check the
hash, each line with the following three fields separated by two spaces:
该文件的格式是每个要检查哈希的文件的一行,每行有以下三个字段,用两个空格分隔:
the type of hash, one of:
哈希类型之一:
md5
, sha1
, sha224
, sha256
, sha384
, sha512
the hash of the file:
文件的哈希值:
md5
, 32 hexadecimal characters
md5
,32 个十六进制字符sha1
, 40 hexadecimal characters
sha1
,40 个十六进制字符sha224
, 56 hexadecimal characters
sha224
,56 个十六进制字符sha256
, 64 hexadecimal characters
sha256
,64 个十六进制字符sha384
, 96 hexadecimal characters
sha384
,96 个十六进制字符sha512
, 128 hexadecimal characters
sha512
,128 个十六进制字符
the name of the file:
文件名:
FOO_LICENSE_FILES
.
FOO_LICENSE_FILES
中显示的路径相同。Lines starting with a #
sign are considered comments, and ignored. Empty
lines are ignored.
以 #
符号开头的行被视为注释,并被忽略。空行也会被忽略。
There can be more than one hash for a single file, each on its own line. In
this case, all hashes must match.
对于单个文件可以有多个哈希值,每个哈希值占据一行。在这种情况下,所有哈希值必须匹配。
Note. Ideally, the hashes stored in this file should match the hashes published by
upstream, e.g. on their website, in the e-mail announcement… If upstream
provides more than one type of hash (e.g. sha1
and sha512
), then it is
best to add all those hashes in the .hash
file. If upstream does not
provide any hash, or only provides an md5
hash, then compute at least one
strong hash yourself (preferably sha256
, but not md5
), and mention
this in a comment line above the hashes.
注意。理想情况下,此文件中存储的哈希应与上游发布的哈希匹配,例如在其网站、电子邮件公告中... 如果上游提供多种类型的哈希(例如 sha1
和 sha512
),则最好将所有这些哈希添加到 .hash
文件中。如果上游没有提供任何哈希,或者只提供一个 md5
哈希,则至少自己计算一个强哈希(最好是 sha256
,但不是 md5
),并在哈希上方的注释行中提及此事。
Note. The hashes for license files are used to detect a license change when a
package version is bumped. The hashes are checked during the make legal-info
target run. For a package with multiple versions (like Qt5),
create the hash file in a subdirectory <packageversion>
of that package
(see also Section 19.2, “How patches are applied”).
注意。许可文件的哈希用于在软件包版本升级时检测许可证更改。在运行 make legal-info 目标时会检查这些哈希。对于具有多个版本的软件包(如 Qt5),请在该软件包的子目录 <packageversion>
中创建哈希文件(另请参见第 19.2 节“如何应用补丁”)。
The example below defines a sha1
and a sha256
published by upstream for
the main libfoo-1.2.3.tar.bz2
tarball, an md5
from upstream and a
locally-computed sha256
hashes for a binary blob, a sha256
for a
downloaded patch, and an archive with no hash:
下面的示例定义了上游发布的主 libfoo-1.2.3.tar.bz2
压缩包的 sha1
和 sha256
,上游的 md5
以及本地计算的 sha256
二进制 blob 的哈希,一个下载的补丁的 sha256
,以及一个没有哈希的存档:
# Hashes from: http://www.foosoftware.org/download/libfoo-1.2.3.tar.bz2.{sha1,sha256}: sha1 486fb55c3efa71148fe07895fd713ea3a5ae343a libfoo-1.2.3.tar.bz2 sha256 efc8103cc3bcb06bda6a781532d12701eb081ad83e8f90004b39ab81b65d4369 libfoo-1.2.3.tar.bz2 # md5 from: http://www.foosoftware.org/download/libfoo-1.2.3.tar.bz2.md5, sha256 locally computed: md5 2d608f3c318c6b7557d551a5a09314f03452f1a1 libfoo-data.bin sha256 01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b libfoo-data.bin # Locally computed: sha256 ff52101fb90bbfc3fe9475e425688c660f46216d7e751c4bbdb1dc85cdccacb9 libfoo-fix-blabla.patch # Hash for license files: sha256 a45a845012742796534f7e91fe623262ccfb99460a2bd04015bd28d66fba95b8 COPYING sha256 01b1f9f2c8ee648a7a596a1abe8aa4ed7899b1c9e5551bda06da6e422b04aa55 doc/COPYING.LGPL
If the .hash
file is present, and it contains one or more hashes for a
downloaded file, the hash(es) computed by Buildroot (after download) must
match the hash(es) stored in the .hash
file. If one or more hashes do
not match, Buildroot considers this an error, deletes the downloaded file,
and aborts.
如果 .hash
文件存在,并且包含一个或多个用于下载文件的哈希值,则 Buildroot 计算的哈希值(下载后)必须与 .hash
文件中存储的哈希值匹配。如果一个或多个哈希值不匹配,Buildroot 将视为错误,删除已下载的文件,并中止操作。
If the .hash
file is present, but it does not contain a hash for a
downloaded file, Buildroot considers this an error and aborts. However,
the downloaded file is left in the download directory since this
typically indicates that the .hash
file is wrong but the downloaded
file is probably OK.
如果 .hash
文件存在,但不包含用于下载文件的哈希值,则 Buildroot 将视为错误并中止操作。但是,已下载的文件将保留在下载目录中,因为这通常表示 .hash
文件错误,但已下载的文件可能是正确的。
Hashes are currently checked for files fetched from http/ftp servers,
Git or subversion repositories, files copied using scp and local files.
Hashes are not checked for other version control systems (such as CVS,
mercurial) because Buildroot currently does not generate reproducible
tarballs when source code is fetched from such version control
systems.
目
前对从 http/ftp 服务器、Git 或 subversion 仓库获取的文件、使用 scp
复制的文件和本地文件进行哈希检查。不对其他版本控制系统(如 CVS、mercurial)的文件进行哈希检查,因为 Buildroot
目前无法从这些版本控制系统获取源代码时生成可重现的 tarballs。
Additionally, for packages for which it is possible to specify a custom
version (e.g. a custom version string, a remote tarball URL, or a VCS
repository location and changeset), Buildroot can’t carry hashes for
those. It is however possible to provide a list of
extra hashes that can cover such cases.
此外,对于可以指定自定义版本的软件包(例如自定义版本字符串、远程 tarball URL 或 VCS 存储库位置和更改集),Buildroot 无法为其携带哈希。但可以提供一组额外的哈希列表,以涵盖这种情况。
Hashes should only be added in .hash
files for files that are
guaranteed to be stable. For example, patches auto-generated by Github
are not guaranteed to be stable, and therefore their hashes can change
over time. Such patches should not be downloaded, and instead be added
locally to the package folder.
只应在 .hash
文件中添加哈希,用于保证稳定的文件。例如,Github 自动生成的补丁不能保证稳定,因此它们的哈希值可能随时间变化。这样的补丁不应被下载,而应该本地添加到软件包文件夹中。
If the .hash
file is missing, then no check is done at all.
如果 .hash
文件丢失,则根本不进行任何检查。
Packages that provide a system daemon usually need to be started somehow
at boot. Buildroot comes with support for several init systems, some
are considered tier one (see Section 6.3, “init system”), while others are also
available but do not have the same level of integration. Ideally, all
packages providing a system daemon should provide a start script for
BusyBox/SysV init and a systemd unit file.
提
供系统守护程序的软件包通常需要在启动时以某种方式启动。Buildroot 支持几种 init 系统,其中一些被视为一级支持(请参阅第 6.3
节“init 系统”),而其他一些也可用但集成级别不同。理想情况下,所有提供系统守护程序的软件包都应提供一个适用于 BusyBox/SysV
init 的启动脚本和一个 systemd 单元文件。
For consistency, the start script must follow the style and composition
as shown in the reference: package/busybox/S01syslogd
. An annotated
example of this style is shown below. There is no specific coding style
for systemd unit files, but if a package comes with its own unit file,
that is preferred over a buildroot specific one, if it is compatible
with buildroot.
为了保持一致性,启动脚本必须遵循参考中显示的样式和构成: package/busybox/S01syslogd
。下面显示了此样式的带注释示例。systemd 单元文件没有特定的编码样式,但如果软件包附带自己的单元文件,则与 Buildroot 特定的单元文件兼容的情况下,应优先使用软件包自带的单元文件。
The name of the start script is composed of the SNN
and the daemon
name. The NN
is the start order number which needs to be carefully
chosen. For example, a program that requires networking to be up should
not start before S40network
. The scripts are started in alphabetical
order, so S01syslogd
starts before S01watchdogd
, and S02sysctl
start thereafter.
启动脚本的名称由 SNN
和守护程序名称组成。 NN
是需要仔细选择的启动顺序号。例如,需要网络连接正常工作的程序不应在 S40network
之前启动。脚本按字母顺序启动,因此 S01syslogd
在 S01watchdogd
之前启动, S02sysctl
在其后启动。
01: #!/bin/sh 02: 03: DAEMON="syslogd" 04: PIDFILE="/var/run/$DAEMON.pid" 05: 06: SYSLOGD_ARGS="" 07: 08: # shellcheck source=/dev/null 09: [ -r "/etc/default/$DAEMON" ] && . "/etc/default/$DAEMON" 10: 11: # BusyBox' syslogd does not create a pidfile, so pass "-n" in the command line 12: # and use "-m" to instruct start-stop-daemon to create one. 13: start() { 14: printf 'Starting %s: ' "$DAEMON" 15: # shellcheck disable=SC2086 # we need the word splitting 16: start-stop-daemon -b -m -S -q -p "$PIDFILE" -x "/sbin/$DAEMON" \ 17: -- -n $SYSLOGD_ARGS 18: status=$? 19: if [ "$status" -eq 0 ]; then 20: echo "OK" 21: else 22: echo "FAIL" 23: fi 24: return "$status" 25: } 26: 27: stop() { 28: printf 'Stopping %s: ' "$DAEMON" 29: start-stop-daemon -K -q -p "$PIDFILE" 30: status=$? 31: if [ "$status" -eq 0 ]; then 32: rm -f "$PIDFILE" 33: echo "OK" 34: else 35: echo "FAIL" 36: fi 37: return "$status" 38: } 39: 40: restart() { 41: stop 42: sleep 1 43: start 44: } 45: 46: case "$1" in 47: start|stop|restart) 48: "$1";; 49: reload) 50: # Restart, since there is no true "reload" feature. 51: restart;; 52: *) 53: echo "Usage: $0 {start|stop|restart|reload}" 54: exit 1 55: esac
Note: programs that support reloading their configuration in some
fashion (SIGHUP
) should provide a reload()
function similar to
stop()
. The start-stop-daemon
supports -K -s HUP
for this.
It is recommended to always append -x "/sbin/$DAEMON"
to all the
start-stop-daemon
commands to ensure signals are set to a PID that
matches $DAEMON
.
注意:支持以某种方式重新加载其配置的程序( SIGHUP
)应提供类似于 stop()
的 reload()
函数。 start-stop-daemon
支持 -K -s HUP
。建议始终将 -x "/sbin/$DAEMON"
附加到所有 start-stop-daemon
命令,以确保信号设置为与 $DAEMON
匹配的 PID。
Both start scripts and unit files can source command line arguments from
/etc/default/foo
, in general, if such a file does not exist it should
not block the start of the daemon, unless there is some site specirfic
command line argument the daemon requires to start. For start scripts a
FOO_ARGS="-s -o -m -e -args"
can be defined to a default value in and
the user can override this from /etc/default/foo
.
启动脚本和单元文件都可以从 /etc/default/foo
中获取命令行参数,一般来说,如果这样的文件不存在,守护进程的启动不应该被阻塞,除非守护进程启动需要一些特定于站点的命令行参数。对于启动脚本,可以在 FOO_ARGS="-s -o -m -e -args"
中定义一个默认值,用户可以从 /etc/default/foo
中覆盖这个值。
By packages with specific build systems we mean all the packages
whose build system is not one of the standard ones, such as
autotools or CMake. This typically includes packages whose build
system is based on hand-written Makefiles or shell scripts.
通过具有特定构建系统的软件包,我们指的是所有构建系统不是标准构建系统之一的软件包,例如 autotools 或 CMake。这通常包括构建系统基于手写的 Makefile 或 shell 脚本的软件包。
01: ################################################################################ 02: # 03: # libfoo 04: # 05: ################################################################################ 06: 07: LIBFOO_VERSION = 1.0 08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz 09: LIBFOO_SITE = http://www.foosoftware.org/download 10: LIBFOO_LICENSE = GPL-3.0+ 11: LIBFOO_LICENSE_FILES = COPYING 12: LIBFOO_INSTALL_STAGING = YES 13: LIBFOO_CONFIG_SCRIPTS = libfoo-config 14: LIBFOO_DEPENDENCIES = host-libaaa libbbb 15: 16: define LIBFOO_BUILD_CMDS 17: $(MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D) all 18: endef 19: 20: define LIBFOO_INSTALL_STAGING_CMDS 21: $(INSTALL) -D -m 0755 $(@D)/libfoo.a $(STAGING_DIR)/usr/lib/libfoo.a 22: $(INSTALL) -D -m 0644 $(@D)/foo.h $(STAGING_DIR)/usr/include/foo.h 23: $(INSTALL) -D -m 0755 $(@D)/libfoo.so* $(STAGING_DIR)/usr/lib 24: endef 25: 26: define LIBFOO_INSTALL_TARGET_CMDS 27: $(INSTALL) -D -m 0755 $(@D)/libfoo.so* $(TARGET_DIR)/usr/lib 28: $(INSTALL) -d -m 0755 $(TARGET_DIR)/etc/foo.d 29: endef 30: 31: define LIBFOO_USERS 32: foo -1 libfoo -1 * - - - LibFoo daemon 33: endef 34: 35: define LIBFOO_DEVICES 36: /dev/foo c 666 0 0 42 0 - - - 37: endef 38: 39: define LIBFOO_PERMISSIONS 40: /bin/foo f 4755 foo libfoo - - - - - 41: endef 42: 43: $(eval $(generic-package))
The Makefile begins on line 7 to 11 with metadata information: the
version of the package (LIBFOO_VERSION
), the name of the
tarball containing the package (LIBFOO_SOURCE
) (xz-ed tarball recommended)
the Internet location at which the tarball can be downloaded from
(LIBFOO_SITE
), the license (LIBFOO_LICENSE
) and file with the
license text (LIBFOO_LICENSE_FILES
). All variables must start with
the same prefix, LIBFOO_
in this case. This prefix is always the
uppercased version of the package name (see below to understand where
the package name is defined).
Makefile 从第 7 到 11 行开始包含元数据信息:软件包的版本( LIBFOO_VERSION
),包含软件包的 tarball 的名称( LIBFOO_SOURCE
)(建议使用 xz-ed tarball),可以从中下载 tarball 的互联网位置( LIBFOO_SITE
),许可证( LIBFOO_LICENSE
)和带有许可证文本的文件( LIBFOO_LICENSE_FILES
)。所有变量必须以相同的前缀开始,本例中为 LIBFOO_
。这个前缀始终是软件包名称的大写版本(请参阅下面了解软件包名称的定义位置)。
On line 12, we specify that this package wants to install something to
the staging space. This is often needed for libraries, since they must
install header files and other development files in the staging space.
This will ensure that the commands listed in the
LIBFOO_INSTALL_STAGING_CMDS
variable will be executed.
在第 12 行,我们指定此软件包希望将某些内容安装到暂存空间。这通常对库是必要的,因为它们必须将头文件和其他开发文件安装到暂存空间中。这将确保将执行 LIBFOO_INSTALL_STAGING_CMDS
变量中列出的命令。
On line 13, we specify that there is some fixing to be done to some
of the libfoo-config files that were installed during
LIBFOO_INSTALL_STAGING_CMDS
phase.
These *-config files are executable shell script files that are
located in $(STAGING_DIR)/usr/bin directory and are executed
by other 3rd party packages to find out the location and the linking
flags of this particular package.
在第 13 行,我们指定在 LIBFOO_INSTALL_STAGING_CMDS
阶段安装的一些 libfoo-config 文件需要进行修复。这些 *-config 文件是可执行的 shell 脚本文件,位于 $(STAGING_DIR)/usr/bin 目录中,并由其他第三方软件包执行,以查找此特定软件包的位置和链接标志。
The problem is that all these *-config files by default give wrong,
host system linking flags that are unsuitable for cross-compiling.
问题在于所有这些 *-config 文件默认提供错误的主机系统链接标志,这些标志不适用于交叉编译。
For example: -I/usr/include instead of -I$(STAGING_DIR)/usr/include
or: -L/usr/lib instead of -L$(STAGING_DIR)/usr/lib
例如:-I/usr/include 而不是 -I$(STAGING_DIR)/usr/include 或:-L/usr/lib 而不是 -L$(STAGING_DIR)/usr/lib
So some sed magic is done to these scripts to make them give correct
flags.
The argument to be given to LIBFOO_CONFIG_SCRIPTS
is the file name(s)
of the shell script(s) needing fixing. All these names are relative to
$(STAGING_DIR)/usr/bin and if needed multiple names can be given.
因此,对这些脚本进行了一些 sed 魔术操作,使它们提供正确的标志。要传递给 LIBFOO_CONFIG_SCRIPTS
的参数是需要修复的 shell 脚本的文件名(s)。所有这些名称都是相对于$(STAGING_DIR)/usr/bin 的,如果需要,可以提供多个名称。
In addition, the scripts listed in LIBFOO_CONFIG_SCRIPTS
are removed
from $(TARGET_DIR)/usr/bin
, since they are not needed on the target.
另外,从 $(TARGET_DIR)/usr/bin
中删除了 LIBFOO_CONFIG_SCRIPTS
中列出的脚本,因为它们在目标上不需要。
Example 18.1. Config script: divine package
示例 18.1。配置脚本:神圣包
Package divine installs shell script $(STAGING_DIR)/usr/bin/divine-config.
包神安装 shell 脚本$(STAGING_DIR)/usr/bin/divine-config。
So its fixup would be:
因此它的修复将是:
DIVINE_CONFIG_SCRIPTS = divine-config
Example 18.2. Config script: imagemagick package:
示例 18.2。配置脚本:imagemagick 包:
Package imagemagick installs the following scripts:
$(STAGING_DIR)/usr/bin/{Magick,Magick++,MagickCore,MagickWand,Wand}-config
软件包 imagemagick 安装以下脚本:$(STAGING_DIR)/usr/bin/{Magick,Magick++,MagickCore,MagickWand,Wand}-config
So it’s fixup would be:
因此,它的修复将是:
IMAGEMAGICK_CONFIG_SCRIPTS = \ Magick-config Magick++-config \ MagickCore-config MagickWand-config Wand-config
On line 14, we specify the list of dependencies this package relies
on. These dependencies are listed in terms of lower-case package names,
which can be packages for the target (without the host-
prefix) or packages for the host (with the host-
) prefix).
Buildroot will ensure that all these packages are built and installed
before the current package starts its configuration.
在第 14 行,我们指定了此软件包依赖的依赖项列表。这些依赖项按照小写软件包名称列出,可以是目标软件包(不带 host-
前缀)或主机软件包(带 host-
前缀)。Buildroot 将确保在当前软件包开始配置之前构建和安装所有这些软件包。
The rest of the Makefile, lines 16..29, defines what should be done
at the different steps of the package configuration, compilation and
installation.
LIBFOO_BUILD_CMDS
tells what steps should be performed to
build the package. LIBFOO_INSTALL_STAGING_CMDS
tells what
steps should be performed to install the package in the staging space.
LIBFOO_INSTALL_TARGET_CMDS
tells what steps should be
performed to install the package in the target space.
Makefile 的其余部分,第 16 到 29 行,定义了在软件包配置、编译和安装的不同步骤中应该执行的操作。 LIBFOO_BUILD_CMDS
指定了构建软件包时应执行的步骤。 LIBFOO_INSTALL_STAGING_CMDS
指定了将软件包安装到暂存空间时应执行的步骤。 LIBFOO_INSTALL_TARGET_CMDS
指定了将软件包安装到目标空间时应执行的步骤。
All these steps rely on the $(@D)
variable, which
contains the directory where the source code of the package has been
extracted.
所有这些步骤都依赖于 $(@D)
变量,该变量包含了已提取软件包源代码的目录。
On lines 31..33, we define a user that is used by this package (e.g.
to run a daemon as non-root) (LIBFOO_USERS
).
在 31 到 33 行,我们定义了一个由该软件包使用的用户(例如,以非 root 用户身份运行守护程序)( LIBFOO_USERS
)。
On line 35..37, we define a device-node file used by this package
(LIBFOO_DEVICES
).
在 35 到 37 行,我们定义了该软件包使用的设备节点文件( LIBFOO_DEVICES
)。
On line 39..41, we define the permissions to set to specific files
installed by this package (LIBFOO_PERMISSIONS
).
在第 39..41 行,我们定义了要设置为此软件包安装的特定文件的权限( LIBFOO_PERMISSIONS
)。
Finally, on line 43, we call the generic-package
function, which
generates, according to the variables defined previously, all the
Makefile code necessary to make your package working.
最后,在第 43 行,我们调用 generic-package
函数,根据先前定义的变量生成所有必要的 Makefile 代码,使您的软件包正常工作。
There are two variants of the generic target. The generic-package
macro is
used for packages to be cross-compiled for the target. The
host-generic-package
macro is used for host packages, natively compiled
for the host. It is possible to call both of them in a single .mk
file: once to create the rules to generate a target
package and once to create the rules to generate a host package:
通用目标有两个变体。 generic-package
宏用于要为目标交叉编译的软件包。 host-generic-package
宏用于主机软件包,为主机本地编译。可以在单个 .mk
文件中调用它们两次:一次用于创建生成目标软件包的规则,一次用于创建生成主机软件包的规则:
$(eval $(generic-package)) $(eval $(host-generic-package))
This might be useful if the compilation of the target package requires
some tools to be installed on the host. If the package name is
libfoo
, then the name of the package for the target is also
libfoo
, while the name of the package for the host is
host-libfoo
. These names should be used in the DEPENDENCIES
variables of other packages, if they depend on libfoo
or
host-libfoo
.
如果编译目标软件包需要在主机上安装一些工具,则这可能很有用。如果软件包名称是 libfoo
,那么目标软件包的名称也是 libfoo
,而主机软件包的名称是 host-libfoo
。如果其他软件包依赖于 libfoo
或 host-libfoo
,则应在其他软件包的 DEPENDENCIES 变量中使用这些名称。
The call to the generic-package
and/or host-generic-package
macro
must be at the end of the .mk
file, after all variable definitions.
The call to host-generic-package
must be after the call to
generic-package
, if any.
对 generic-package
和/或 host-generic-package
宏的调用必须在 .mk
文件的末尾,在所有变量定义之后。对 host-generic-package
的调用必须在对 generic-package
的调用之后,如果有的话。
For the target package, the generic-package
uses the variables defined by
the .mk file and prefixed by the uppercased package name:
LIBFOO_*
. host-generic-package
uses the HOST_LIBFOO_*
variables. For
some variables, if the HOST_LIBFOO_
prefixed variable doesn’t
exist, the package infrastructure uses the corresponding variable
prefixed by LIBFOO_
. This is done for variables that are likely to
have the same value for both the target and host packages. See below
for details.
对于目标软件包, generic-package
使用由.mk 文件定义并以大写软件包名称为前缀的变量: LIBFOO_*
。 host-generic-package
使用 HOST_LIBFOO_*
变量。对于某些变量,如果不存在以 HOST_LIBFOO_
为前缀的变量,则软件包基础设施使用相应的以 LIBFOO_
为前缀的变量。这是为了那些目标软件包和主机软件包可能具有相同值的变量。详情请参见下文。
The list of variables that can be set in a .mk
file to give metadata
information is (assuming the package name is libfoo
) :
可在 .mk
文件中设置的变量列表,以提供元数据信息(假设软件包名称为 libfoo
):
LIBFOO_VERSION
, mandatory, must contain the version of the
package. Note that if HOST_LIBFOO_VERSION
doesn’t exist, it is
assumed to be the same as LIBFOO_VERSION
. It can also be a
revision number or a tag for packages that are fetched directly
from their version control system. Examples:
LIBFOO_VERSION
,强制,必须包含软件包的版本。请注意,如果 HOST_LIBFOO_VERSION
不存在,则假定与 LIBFOO_VERSION
相同。也可以是用于直接从版本控制系统获取软件包的修订号或标记。示例:
LIBFOO_VERSION = 0.1.2
LIBFOO_VERSION = 0.1.2
LIBFOO_VERSION = cb9d6aa9429e838f0e54faa3d455bcbab5eef057
LIBFOO_VERSION = cb9d6aa9429e838f0e54faa3d455bcbab5eef057
a tag for a git tree LIBFOO_VERSION = v0.1.2
一个 git 树的标签: LIBFOO_VERSION = v0.1.2
Note: Using a branch name as FOO_VERSION
is not supported, because it does
not and can not work as people would expect it should:
注意:不支持将分支名称用作 FOO_VERSION
,因为它不会按照人们期望的方式工作:
LIBFOO_SOURCE
may contain the name of the tarball of the package,
which Buildroot will use to download the tarball from
LIBFOO_SITE
. If HOST_LIBFOO_SOURCE
is not specified, it defaults
to LIBFOO_SOURCE
. If none are specified, then the value is assumed
to be libfoo-$(LIBFOO_VERSION).tar.gz
.
Example: LIBFOO_SOURCE = foobar-$(LIBFOO_VERSION).tar.bz2
LIBFOO_SOURCE
可能包含软件包的 tarball 名称,Buildroot 将使用它从 LIBFOO_SITE
下载 tarball 。如果未指定 HOST_LIBFOO_SOURCE
,则默认为 LIBFOO_SOURCE
。如果未指定任何内容,则假定该值为 libfoo-$(LIBFOO_VERSION).tar.gz
。示例: LIBFOO_SOURCE = foobar-$(LIBFOO_VERSION).tar.bz2
LIBFOO_PATCH
may contain a space-separated list of patch file
names, that Buildroot will download and apply to the package source
code. If an entry contains ://
, then Buildroot will assume it is a
full URL and download the patch from this location. Otherwise,
Buildroot will assume that the patch should be downloaded from
LIBFOO_SITE
. If HOST_LIBFOO_PATCH
is not specified, it defaults
to LIBFOO_PATCH
. Note that patches that are included in Buildroot
itself use a different mechanism: all files of the form
*.patch
present in the package directory inside
Buildroot will be applied to the package after extraction (see
patching a package). Finally, patches listed in
the LIBFOO_PATCH
variable are applied before the patches stored
in the Buildroot package directory.
LIBFOO_PATCH
可能包含一个空格分隔的补丁文件名列表,Buildroot 将下载并应用于软件包源代码。如果条目包含 ://
,则 Buildroot 将假定它是完整的 URL 并从此位置下载补丁。否则,Buildroot 将假定应从 LIBFOO_SITE
下载补丁。如果未指定 HOST_LIBFOO_PATCH
,则默认为 LIBFOO_PATCH
。请注意,Buildroot 自身包含的补丁使用不同的机制:Buildroot 内部软件包目录中存在的形式为 *.patch
的所有文件将在提取后应用于软件包(请参阅应用补丁到软件包)。最后,在 Buildroot 软件包目录中存储的补丁之前应用 LIBFOO_PATCH
变量中列出的补丁。LIBFOO_SITE
provides the location of the package, which can be a
URL or a local filesystem path. HTTP, FTP and SCP are supported URL
types for retrieving package tarballs. In these cases don’t include a
trailing slash: it will be added by Buildroot between the directory
and the filename as appropriate. Git, Subversion, Mercurial,
and Bazaar are supported URL types for retrieving packages directly
from source code management systems. There is a helper function to make
it easier to download source tarballs from GitHub (refer to
Section 18.25.4, “How to add a package from GitHub” for details). A filesystem path may be used
to specify either a tarball or a directory containing the package
source code. See LIBFOO_SITE_METHOD
below for more details on how
retrieval works.
Note that SCP URLs should be of the form
scp://[user@]host:filepath
, and that filepath is relative to the
user’s home directory, so you may want to prepend the path with a
slash for absolute paths:
scp://[user@]host:/absolutepath
. The same goes for SFTP URLs.
If HOST_LIBFOO_SITE
is not specified, it defaults to
LIBFOO_SITE
.
Examples:
LIBFOO_SITE=http://www.libfoosoftware.org/libfoo
LIBFOO_SITE=http://svn.xiph.org/trunk/Tremor
LIBFOO_SITE=/opt/software/libfoo.tar.gz
LIBFOO_SITE=$(TOPDIR)/../src/libfoo
LIBFOO_SITE
提供了软件包的位置,可以是 URL 或本地文件系统路径。支持使用 HTTP、FTP 和 SCP 作为 URL 类型来检索软件包
tarballs。在这些情况下,不要包含尾部斜杠:Buildroot
会根据需要在目录和文件名之间添加。Git、Subversion、Mercurial 和 Bazaar 是支持的 URL
类型,可直接从源代码管理系统中检索软件包。有一个辅助函数可使从 GitHub 下载源 tarballs 更容易(有关详细信息,请参阅第
18.25.4 节“如何从 GitHub 添加软件包”)。文件系统路径可用于指定 tarball
或包含软件包源代码的目录。有关检索工作原理的更多详细信息,请参见 LIBFOO_SITE_METHOD
。请注意,SCP URL 应为 scp://[user@]host:filepath
的形式,并且 filepath 是相对于用户的主目录的,因此您可能需要在绝对路径前加上斜杠: scp://[user@]host:/absolutepath
。SFTP URL 也是如此。如果未指定 HOST_LIBFOO_SITE
,则默认为 LIBFOO_SITE
。示例: LIBFOO_SITE=http://www.libfoosoftware.org/libfoo
LIBFOO_SITE=http://svn.xiph.org/trunk/Tremor
LIBFOO_SITE=/opt/software/libfoo.tar.gz
LIBFOO_SITE=$(TOPDIR)/../src/libfoo
LIBFOO_DL_OPTS
is a space-separated list of additional options to
pass to the downloader. Useful for retrieving documents with
server-side checking for user logins and passwords, or to use a proxy.
All download methods valid for LIBFOO_SITE_METHOD
are supported;
valid options depend on the download method (consult the man page
for the respective download utilities).
LIBFOO_DL_OPTS
是传递给下载器的一组以空格分隔的附加选项。用于检索具有服务器端检查用户登录和密码或使用代理的文档。支持所有适用于 LIBFOO_SITE_METHOD
的下载方法;有效选项取决于下载方法(请参阅相应下载实用程序的 man 页面)。LIBFOO_EXTRA_DOWNLOADS
is a space-separated list of additional
files that Buildroot should download. If an entry contains ://
then Buildroot will assume it is a complete URL and will download
the file using this URL. Otherwise, Buildroot will assume the file
to be downloaded is located at LIBFOO_SITE
. Buildroot will not do
anything with those additional files, except download them: it will
be up to the package recipe to use them from $(LIBFOO_DL_DIR)
.
LIBFOO_EXTRA_DOWNLOADS
是 Buildroot 应下载的一组以空格分隔的附加文件。如果条目包含 ://
,则 Buildroot 将假定它是完整的 URL,并将使用此 URL 下载文件。否则,Buildroot 将假定要下载的文件位于 LIBFOO_SITE
。Buildroot 不会对这些附加文件执行任何操作,除了下载它们:将由软件包配方使用它们从 $(LIBFOO_DL_DIR)
。
LIBFOO_SITE_METHOD
determines the method used to fetch or copy the
package source code. In many cases, Buildroot guesses the method
from the contents of LIBFOO_SITE
and setting LIBFOO_SITE_METHOD
is unnecessary. When HOST_LIBFOO_SITE_METHOD
is not specified, it
defaults to the value of LIBFOO_SITE_METHOD
.
The possible values of LIBFOO_SITE_METHOD
are:
LIBFOO_SITE_METHOD
确定用于获取或复制软件包源代码的方法。在许多情况下,Buildroot 会从 LIBFOO_SITE
的内容猜测方法,并设置 LIBFOO_SITE_METHOD
是不必要的。当未指定 HOST_LIBFOO_SITE_METHOD
时,默认为 LIBFOO_SITE_METHOD
的值。 LIBFOO_SITE_METHOD
的可能值为:
wget
for normal FTP/HTTP downloads of tarballs. Used by
default when LIBFOO_SITE
begins with http://
, https://
or
ftp://
.
wget
用于普通 FTP/HTTP 下载 tarballs。当 LIBFOO_SITE
以 http://
, https://
或 ftp://
开头时,默认使用。scp
for downloads of tarballs over SSH with scp. Used by
default when LIBFOO_SITE
begins with scp://
.
scp
用于通过 scp 使用 SSH 下载 tarballs。当 LIBFOO_SITE
以 scp://
开头时,默认使用。sftp
for downloads of tarballs over SSH with sftp. Used by
default when LIBFOO_SITE
begins with sftp://
.
sftp
用于通过 sftp 使用 SSH 下载 tarballs。当 LIBFOO_SITE
以 sftp://
开头时,默认使用。svn
for retrieving source code from a Subversion repository.
Used by default when LIBFOO_SITE
begins with svn://
. When a
http://
Subversion repository URL is specified in
LIBFOO_SITE
, one must specify LIBFOO_SITE_METHOD=svn
.
Buildroot performs a checkout which is preserved as a tarball in
the download cache; subsequent builds use the tarball instead of
performing another checkout.
svn
用于从 Subversion 存储库检索源代码。当 LIBFOO_SITE
以 svn://
开头时,默认使用。当在 LIBFOO_SITE
中指定了 http://
Subversion 存储库 URL 时,必须指定 LIBFOO_SITE_METHOD=svn
。Buildroot 执行检出操作,将其保留为下载缓存中的 tarball;后续构建使用 tarball 而不是执行另一个检出操作。cvs
for retrieving source code from a CVS repository.
Used by default when LIBFOO_SITE
begins with cvs://
.
The downloaded source code is cached as with the svn
method.
Anonymous pserver mode is assumed otherwise explicitly defined
on LIBFOO_SITE
. Both
LIBFOO_SITE=cvs://libfoo.net:/cvsroot/libfoo
and
LIBFOO_SITE=cvs://:ext:libfoo.net:/cvsroot/libfoo
are accepted, on the former anonymous pserver access mode is
assumed.
LIBFOO_SITE
must contain the source URL as well as the remote
repository directory. The module is the package name.
LIBFOO_VERSION
is mandatory and must be a tag, a branch, or
a date (e.g. "2014-10-20", "2014-10-20 13:45", "2014-10-20
13:45+01" see "man cvs" for further details).
cvs
用于从 CVS 存储库检索源代码。当 LIBFOO_SITE
以 cvs://
开头时,默认使用。下载的源代码与 svn
方法一样被缓存。否则,假定为匿名 pserver 模式,或在 LIBFOO_SITE
上明确定义。 LIBFOO_SITE=cvs://libfoo.net:/cvsroot/libfoo
和 LIBFOO_SITE=cvs://:ext:libfoo.net:/cvsroot/libfoo
都被接受,前者假定为匿名 pserver 访问模式。 LIBFOO_SITE
必须包含源 URL 以及远程存储库目录。模块是软件包名称。 LIBFOO_VERSION
是必需的,必须是标签、分支或日期(例如“2014-10-20”,“2014-10-20 13:45”,“2014-10-20 13:45+01”参见“man cvs”获取更多详细信息)。git
for retrieving source code from a Git repository. Used by
default when LIBFOO_SITE
begins with git://
. The downloaded
source code is cached as with the svn
method.
git
用于从 Git 存储库检索源代码。当 LIBFOO_SITE
以 git://
开头时,默认使用。下载的源代码与 svn
方法一样被缓存。hg
for retrieving source code from a Mercurial repository. One
must specify LIBFOO_SITE_METHOD=hg
when LIBFOO_SITE
contains a Mercurial repository URL. The downloaded source code
is cached as with the svn
method.
hg
。当 LIBFOO_SITE
包含 Mercurial 存储库 URL 时,必须指定 LIBFOO_SITE_METHOD=hg
。下载的源代码与 svn
方法一样被缓存。bzr
for retrieving source code from a Bazaar repository. Used
by default when LIBFOO_SITE
begins with bzr://
. The
downloaded source code is cached as with the svn
method.
bzr
。当 LIBFOO_SITE
以 bzr://
开头时,默认使用。下载的源代码与 svn
方法一样被缓存。file
for a local tarball. One should use this when
LIBFOO_SITE
specifies a package tarball as a local filename.
Useful for software that isn’t available publicly or in version
control.
file
。当 LIBFOO_SITE
指定软件包 tarball 作为本地文件名时,应使用此选项。适用于公开不可用或不在版本控制中的软件。local
for a local source code directory. One should use this
when LIBFOO_SITE
specifies a local directory path containing
the package source code. Buildroot copies the contents of the
source directory into the package’s build directory. Note that
for local
packages, no patches are applied. If you need to
still patch the source code, use LIBFOO_POST_RSYNC_HOOKS
, see
Section 18.23.1, “Using the POST_RSYNC
hook”.
local
用于本地源代码目录。当 LIBFOO_SITE
指定包含软件包源代码的本地目录路径时,应使用此选项。Buildroot 将源目录的内容复制到软件包的构建目录中。请注意,对于 local
软件包,不会应用补丁。如果仍然需要对源代码打补丁,请使用 LIBFOO_POST_RSYNC_HOOKS
,请参阅第 18.23.1 节“使用 POST_RSYNC
挂钩”。LIBFOO_GIT_SUBMODULES
can be set to YES
to create an archive
with the git submodules in the repository. This is only available
for packages downloaded with git (i.e. when
LIBFOO_SITE_METHOD=git
). Note that we try not to use such git
submodules when they contain bundled libraries, in which case we
prefer to use those libraries from their own package.
LIBFOO_GIT_SUBMODULES
可以设置为 YES
,以创建包含存储库中 git 子模块的存档。这仅适用于使用 git 下载的软件包(即当 LIBFOO_SITE_METHOD=git
时)。请注意,当 git 子模块包含捆绑库时,我们尽量不使用这些 git 子模块,在这种情况下,我们更喜欢从其自己的软件包中使用这些库。LIBFOO_GIT_LFS
should be set to YES
if the Git repository uses
Git LFS to store large files out of band. This is only available for
packages downloaded with git (i.e. when LIBFOO_SITE_METHOD=git
).
LIBFOO_GIT_LFS
设置为 YES
。这仅适用于使用 git 下载的软件包(即当 LIBFOO_SITE_METHOD=git
时)。LIBFOO_SVN_EXTERNALS
can be set to YES
to create an archive with
the svn external references. This is only available for packages
downloaded with subversion.
LIBFOO_SVN_EXTERNALS
可设置为 YES
以创建带有 svn 外部引用的存档。这仅适用于使用 subversion 下载的软件包。LIBFOO_STRIP_COMPONENTS
is the number of leading components
(directories) that tar must strip from file names on extraction.
The tarball for most packages has one leading component named
"<pkg-name>-<pkg-version>", thus Buildroot passes
--strip-components=1 to tar to remove it.
For non-standard packages that don’t have this component, or
that have more than one leading component to strip, set this
variable with the value to be passed to tar. Default: 1.
LIBFOO_STRIP_COMPONENTS
是 tar 在提取文件名时必须剥离的前导组件(目录)的数量。大多数软件包的 tarball 具有一个名为 "-" 的前导组件,因此
Buildroot 传递 --strip-components=1 给 tar
以将其删除。对于没有此组件或有多个要剥离的前导组件的非标准软件包,请将此变量设置为要传递给 tar 的值。默认值:1。LIBFOO_EXCLUDES
is a space-separated list of patterns to exclude
when extracting the archive. Each item from that list is passed as
a tar’s --exclude
option. By default, empty.
LIBFOO_EXCLUDES
是在提取存档时要排除的模式的空格分隔列表。该列表中的每个项目都作为 tar 的 --exclude
选项传递。默认为空。LIBFOO_DEPENDENCIES
lists the dependencies (in terms of package
name) that are required for the current target package to
compile. These dependencies are guaranteed to be compiled and
installed before the configuration of the current package starts.
However, modifications to configuration of these dependencies will
not force a rebuild of the current package. In a similar way,
HOST_LIBFOO_DEPENDENCIES
lists the dependencies for the current
host package.
LIBFOO_DEPENDENCIES
列出了(按软件包名称)编译当前目标软件包所需的依赖关系。这些依赖关系在当前软件包的配置开始之前保证已经编译和安装。但是,对这些依赖关系的配置进行修改不会强制重新构建当前软件包。类似地, HOST_LIBFOO_DEPENDENCIES
列出了当前主机软件包的依赖关系。LIBFOO_EXTRACT_DEPENDENCIES
lists the dependencies (in terms of
package name) that are required for the current target package to be
extracted. These dependencies are guaranteed to be compiled and
installed before the extract step of the current package
starts. This is only used internally by the package infrastructure,
and should typically not be used directly by packages.
LIBFOO_EXTRACT_DEPENDENCIES
列出了(按软件包名称)提取当前目标软件包所需的依赖关系。这些依赖关系在当前软件包的提取步骤开始之前保证已经编译和安装。这仅在软件包基础设施内部使用,通常不应直接由软件包使用。LIBFOO_PATCH_DEPENDENCIES
lists the dependencies (in terms of
package name) that are required for the current package to be
patched. These dependencies are guaranteed to be extracted and
patched (but not necessarily built) before the current package is
patched. In a similar way, HOST_LIBFOO_PATCH_DEPENDENCIES
lists
the dependencies for the current host package.
This is seldom used; usually, LIBFOO_DEPENDENCIES
is what you
really want to use.
LIBFOO_PATCH_DEPENDENCIES
列出了(按软件包名称)修补当前软件包所需的依赖关系。这些依赖关系在当前软件包被修补之前保证已经被提取和修补(但不一定构建)。类似地, HOST_LIBFOO_PATCH_DEPENDENCIES
列出了当前主机软件包的依赖关系。这很少使用;通常, LIBFOO_DEPENDENCIES
才是您真正想要使用的。LIBFOO_PROVIDES
lists all the virtual packages libfoo
is an
implementation of. See Section 18.12, “Infrastructure for virtual packages”.
LIBFOO_PROVIDES
列出所有虚拟包 libfoo
的实现。请参阅第 18.12 节“虚拟包基础设施”。LIBFOO_INSTALL_STAGING
can be set to YES
or NO
(default). If
set to YES
, then the commands in the LIBFOO_INSTALL_STAGING_CMDS
variables are executed to install the package into the staging
directory.
LIBFOO_INSTALL_STAGING
可以设置为 YES
或 NO
(默认)。如果设置为 YES
,则在 LIBFOO_INSTALL_STAGING_CMDS
变量中的命令将被执行以将软件包安装到暂存目录中。LIBFOO_INSTALL_TARGET
can be set to YES
(default) or NO
. If
set to YES
, then the commands in the LIBFOO_INSTALL_TARGET_CMDS
variables are executed to install the package into the target
directory.
LIBFOO_INSTALL_TARGET
可以设置为 YES
(默认)或 NO
。如果设置为 YES
,则在 LIBFOO_INSTALL_TARGET_CMDS
变量中的命令将被执行以将软件包安装到目标目录中。LIBFOO_INSTALL_IMAGES
can be set to YES
or NO
(default). If
set to YES
, then the commands in the LIBFOO_INSTALL_IMAGES_CMDS
variable are executed to install the package into the images
directory.
LIBFOO_INSTALL_IMAGES
可设置为 YES
或 NO
(默认)。如果设置为 YES
,则执行 LIBFOO_INSTALL_IMAGES_CMDS
变量中的命令以将软件包安装到 images 目录中。LIBFOO_CONFIG_SCRIPTS
lists the names of the files in
$(STAGING_DIR)/usr/bin that need some special fixing to make them
cross-compiling friendly. Multiple file names separated by space can
be given and all are relative to $(STAGING_DIR)/usr/bin. The files
listed in LIBFOO_CONFIG_SCRIPTS
are also removed from
$(TARGET_DIR)/usr/bin
since they are not needed on the target.
LIBFOO_CONFIG_SCRIPTS
列出$(STAGING_DIR)/usr/bin 中需要进行一些特殊修复以使其适用于交叉编译的文件名称。可以给出多个以空格分隔的文件名,所有文件名都是相对于$(STAGING_DIR)/usr/bin 的。 LIBFOO_CONFIG_SCRIPTS
中列出的文件也会从 $(TARGET_DIR)/usr/bin
中删除,因为它们在目标设备上不需要。LIBFOO_DEVICES
lists the device files to be created by Buildroot
when using the static device table. The syntax to use is the
makedevs one. You can find some documentation for this syntax in the
Chapter 25, Makedev syntax documentation. This variable is optional.
LIBFOO_DEVICES
列出 Buildroot 在使用静态设备表时要创建的设备文件。要使用的语法是 makedevs 语法。您可以在第 25 章“Makedev 语法文档”中找到有关此语法的一些文档。此变量是可选的。LIBFOO_PERMISSIONS
lists the changes of permissions to be done at
the end of the build process. The syntax is once again the makedevs one.
You can find some documentation for this syntax in the Chapter 25, Makedev syntax documentation.
This variable is optional.
LIBFOO_PERMISSIONS
列出了在构建过程结束时要执行的权限更改。 语法再次是 makedevs 的语法。 您可以在第 25 章“Makedev 语法文档”中找到有关此语法的一些文档。 此变量是可选的。LIBFOO_USERS
lists the users to create for this package, if it installs
a program you want to run as a specific user (e.g. as a daemon, or as a
cron-job). The syntax is similar in spirit to the makedevs one, and is
described in the Chapter 26, Makeusers syntax documentation. This variable is optional.
LIBFOO_USERS
列出了要为此软件包创建的用户,如果它安装了您希望以特定用户身份运行的程序(例如作为守护程序或作为 cron 作业)。 语法在精神上类似于 makedevs,并在第 26 章“Makeusers 语法文档”中进行了描述。 此变量是可选的。
LIBFOO_LICENSE
defines the license (or licenses) under which the package
is released.
This name will appear in the manifest file produced by make legal-info
.
If the license appears in the SPDX License List,
use the SPDX short identifier to make the manifest file uniform.
Otherwise, describe the license in a precise and concise way, avoiding
ambiguous names such as BSD
which actually name a family of licenses.
This variable is optional. If it is not defined, unknown
will appear in
the license
field of the manifest file for this package.
The expected format for this variable must comply with the following rules:
LIBFOO_LICENSE
定义了软件包发布的许可证(或许可证)。 此名称将出现在 make legal-info
生成的清单文件中。 如果许可证出现在 SPDX 许可证列表中,请使用 SPDX 短标识符使清单文件统一。 否则,请以准确简洁的方式描述许可证,避免诸如 BSD
之类的模糊名称,实际上是许可证系列的名称。 此变量是可选的。 如果未定义, unknown
将出现在此软件包的清单文件的 license
字段中。 此变量的预期格式必须符合以下规则:
comma
separate licenses (e.g. LIBFOO_LICENSE =
GPL-2.0+, LGPL-2.1+
). If there is clear distinction between which
component is licensed under what license, then annotate the license
with that component, between parenthesis (e.g. LIBFOO_LICENSE =
GPL-2.0+ (programs), LGPL-2.1+ (libraries)
).
comma
单独许可证(例如 LIBFOO_LICENSE =
GPL-2.0+, LGPL-2.1+
)。如果清楚地区分了哪个组件使用了什么许可证,则在括号内注明该组件的许可证(例如 LIBFOO_LICENSE =
GPL-2.0+ (programs), LGPL-2.1+ (libraries)
)。FOO_LICENSE += , GPL-2.0+
(programs)
); the infrastructure will internally remove the space before
the comma.
FOO_LICENSE += , GPL-2.0+
(programs)
);基础设施将在逗号之前内部删除空格。or
keyword (e.g. LIBFOO_LICENSE = AFL-2.1 or GPL-2.0+
).
or
关键字分隔许可证(例如 LIBFOO_LICENSE = AFL-2.1 or GPL-2.0+
)。LIBFOO_LICENSE_FILES
is a space-separated list of files in the package
tarball that contain the license(s) under which the package is released.
make legal-info
copies all of these files in the legal-info
directory.
See Chapter 13, Legal notice and licensing for more information.
This variable is optional. If it is not defined, a warning will be produced
to let you know, and not saved
will appear in the license files
field
of the manifest file for this package.
LIBFOO_LICENSE_FILES
是包 tarball 中包含的许可证下发布的文件的空格分隔列表。 make legal-info
将所有这些文件复制到 legal-info
目录中。有关更多信息,请参阅第 13 章《法律声明和许可》。此变量是可选的。如果未定义,将生成警告以通知您,并且 not saved
将出现在此软件包的清单文件的 license files
字段中。LIBFOO_ACTUAL_SOURCE_TARBALL
only applies to packages whose
LIBFOO_SITE
/ LIBFOO_SOURCE
pair points to an archive that does
not actually contain source code, but binary code. This a very
uncommon case, only known to apply to external toolchains which come
already compiled, although theoretically it might apply to other
packages. In such cases a separate tarball is usually available with
the actual source code. Set LIBFOO_ACTUAL_SOURCE_TARBALL
to the
name of the actual source code archive and Buildroot will download
it and use it when you run make legal-info
to collect
legally-relevant material. Note this file will not be downloaded
during regular builds nor by make source
.
LIBFOO_ACTUAL_SOURCE_TARBALL
仅适用于其 LIBFOO_SITE
/ LIBFOO_SOURCE
对指向实际不包含源代码而是二进制代码的存档的软件包。这是一种非常罕见的情况,只知道适用于已经编译的外部工具链,尽管从理论上讲,它可能适用于其他软件包。在这种情况下,通常会提供一个单独的 tarball,其中包含实际的源代码。将 LIBFOO_ACTUAL_SOURCE_TARBALL
设置为实际源代码存档的名称,Buildroot 将在运行 make legal-info
以收集与法律相关的材料时下载并使用它。请注意,此文件不会在常规构建期间下载,也不会被 make source
下载。LIBFOO_ACTUAL_SOURCE_SITE
provides the location of the actual
source tarball. The default value is LIBFOO_SITE
, so you don’t
need to set this variable if the binary and source archives are
hosted on the same directory. If LIBFOO_ACTUAL_SOURCE_TARBALL
is
not set, it doesn’t make sense to define
LIBFOO_ACTUAL_SOURCE_SITE
.
LIBFOO_ACTUAL_SOURCE_SITE
提供实际源代码包的位置。默认值为 LIBFOO_SITE
,因此如果二进制文件和源代码存档托管在同一目录中,则无需设置此变量。如果未设置 LIBFOO_ACTUAL_SOURCE_TARBALL
,则定义 LIBFOO_ACTUAL_SOURCE_SITE
就没有意义。LIBFOO_REDISTRIBUTE
can be set to YES
(default) or NO
to indicate if
the package source code is allowed to be redistributed. Set it to NO
for
non-opensource packages: Buildroot will not save the source code for this
package when collecting the legal-info
.
LIBFOO_REDISTRIBUTE
可以设置为 YES
(默认)或 NO
,以指示是否允许重新分发软件包源代码。将其设置为 NO
以用于非开源软件包:在收集 legal-info
时,Buildroot 将不保存此软件包的源代码。LIBFOO_FLAT_STACKSIZE
defines the stack size of an application built into
the FLAT binary format. The application stack size on the NOMMU architecture
processors can’t be enlarged at run time. The default stack size for the
FLAT binary format is only 4k bytes. If the application consumes more stack,
append the required number here.
LIBFOO_FLAT_STACKSIZE
定义构建为 FLAT 二进制格式的应用程序的堆栈大小。NOMMU 架构处理器上的应用程序堆栈大小无法在运行时扩展。FLAT 二进制格式的默认堆栈大小仅为 4k 字节。如果应用程序使用更多堆栈,请在此处添加所需的数量。LIBFOO_BIN_ARCH_EXCLUDE
is a space-separated list of paths (relative
to the target directory) to ignore when checking that the package
installs correctly cross-compiled binaries. You seldom need to set this
variable, unless the package installs binary blobs outside the default
locations, /lib/firmware
, /usr/lib/firmware
, /lib/modules
,
/usr/lib/modules
, and /usr/share
, which are automatically excluded.
LIBFOO_BIN_ARCH_EXCLUDE
是一个空格分隔的路径列表(相对于目标目录),用于在检查软件包是否正确安装交叉编译二进制文件时要忽略的路径。除非软件包在默认位置之外安装二进制文件块,否则很少需要设置此变量, /lib/firmware
, /usr/lib/firmware
, /lib/modules
, /usr/lib/modules
和 /usr/share
会自动被排除。
LIBFOO_IGNORE_CVES
is a space-separated list of CVEs that tells
Buildroot CVE tracking tools which CVEs should be ignored for this
package. This is typically used when the CVE is fixed by a patch in
the package, or when the CVE for some reason does not affect the
Buildroot package. A Makefile comment must always precede the
addition of a CVE to this variable. Example:
LIBFOO_IGNORE_CVES
是一个空格分隔的 CVE 列表,告诉 Buildroot CVE 跟踪工具应忽略哪些 CVE 与此软件包有关。当 CVE
通过软件包中的补丁修复,或者由于某种原因 CVE 不影响 Buildroot 软件包时,通常会使用此选项。在将 CVE
添加到此变量之前,必须始终添加一个 Makefile 注释。示例:
# 0001-fix-cve-2020-12345.patch LIBFOO_IGNORE_CVES += CVE-2020-12345 # only when built with libbaz, which Buildroot doesn't support LIBFOO_IGNORE_CVES += CVE-2020-54321
LIBFOO_CPE_ID_*
variables is a set of variables that allows the
package to define its CPE
identifier. The available variables are:
LIBFOO_CPE_ID_*
变量是一组变量,允许软件包定义其 CPE 标识符。可用的变量有:
LIBFOO_CPE_ID_VALID
, if set to YES
, specifies that the default
values for each of the following variables is appropriate, and
generates a valid CPE ID.
LIBFOO_CPE_ID_VALID
,如果设置为 YES
,则指定每个以下变量的默认值是适当的,并生成有效的 CPE ID。LIBFOO_CPE_ID_PREFIX
, specifies the prefix of the CPE identifier,
i.e the first three fields. When not defined, the default value is
cpe:2.3:a
.
LIBFOO_CPE_ID_PREFIX
,指定 CPE 标识符的前缀,即前三个字段。未定义时,默认值为 cpe:2.3:a
。LIBFOO_CPE_ID_VENDOR
, specifies the vendor part of the CPE
identifier. When not defined, the default value is
<pkgname>_project
.
LIBFOO_CPE_ID_VENDOR
,指定 CPE 标识符的供应商部分。未定义时,默认值为 <pkgname>_project
。LIBFOO_CPE_ID_PRODUCT
, specifies the product part of the CPE
identifier. When not defined, the default value is <pkgname>
.
LIBFOO_CPE_ID_PRODUCT
,指定 CPE 标识符的产品部分。如果未定义,则默认值为 <pkgname>
。LIBFOO_CPE_ID_VERSION
, specifies the version part of the CPE
identifier. When not defined the default value is
$(LIBFOO_VERSION)
.
LIBFOO_CPE_ID_VERSION
,指定 CPE 标识符的版本部分。如果未定义,则默认值为 $(LIBFOO_VERSION)
。LIBFOO_CPE_ID_UPDATE
specifies the update part of the CPE
identifier. When not defined the default value is *
.
LIBFOO_CPE_ID_UPDATE
指定 CPE 标识符的更新部分。如果未定义,则默认值为 *
。If any of those variables is defined, then the generic package
infrastructure assumes the package provides valid CPE information. In
this case, the generic package infrastructure will define
LIBFOO_CPE_ID
.
如果其中任何一个变量被定义,则通用软件包基础设施会假定软件包提供有效的 CPE 信息。在这种情况下,通用软件包基础设施将定义 LIBFOO_CPE_ID
。
For a host package, if its LIBFOO_CPE_ID_*
variables are not
defined, it inherits the value of those variables from the
corresponding target package.
对于主机软件包,如果其 LIBFOO_CPE_ID_*
变量未定义,则从相应目标软件包继承这些变量的值。
The recommended way to define these variables is to use the following
syntax:
定义这些变量的推荐方法是使用以下语法:
LIBFOO_VERSION = 2.32
Now, the variables that define what should be performed at the
different steps of the build process.
现在,定义构建过程不同步骤应执行的变量。
LIBFOO_EXTRACT_CMDS
lists the actions to be performed to extract
the package. This is generally not needed as tarballs are
automatically handled by Buildroot. However, if the package uses a
non-standard archive format, such as a ZIP or RAR file, or has a
tarball with a non-standard organization, this variable allows to
override the package infrastructure default behavior.
LIBFOO_EXTRACT_CMDS
列出要执行的操作以提取软件包。一般情况下不需要,因为 tarballs 会被 Buildroot
自动处理。但是,如果软件包使用非标准的存档格式,比如 ZIP 或 RAR 文件,或者 tarball
具有非标准的组织,此变量允许覆盖软件包基础设施的默认行为。LIBFOO_CONFIGURE_CMDS
lists the actions to be performed to
configure the package before its compilation.
LIBFOO_CONFIGURE_CMDS
列出要在编译之前对软件包进行配置的操作。LIBFOO_BUILD_CMDS
lists the actions to be performed to
compile the package.
LIBFOO_BUILD_CMDS
列出要执行的操作以编译软件包。HOST_LIBFOO_INSTALL_CMDS
lists the actions to be performed
to install the package, when the package is a host package. The
package must install its files to the directory given by
$(HOST_DIR)
. All files, including development files such as
headers should be installed, since other packages might be compiled
on top of this package.
HOST_LIBFOO_INSTALL_CMDS
列出要执行的操作以安装软件包,当软件包是主机软件包时。软件包必须将其文件安装到由 $(HOST_DIR)
给出的目录中。应安装所有文件,包括开发文件(如头文件),因为其他软件包可能会在此软件包之上进行编译。LIBFOO_INSTALL_TARGET_CMDS
lists the actions to be
performed to install the package to the target directory, when the
package is a target package. The package must install its files to
the directory given by $(TARGET_DIR)
. Only the files required for
execution of the package have to be
installed. Header files, static libraries and documentation will be
removed again when the target filesystem is finalized.
LIBFOO_INSTALL_TARGET_CMDS
列出要执行的操作以将软件包安装到目标目录,当软件包是目标软件包时。软件包必须将其文件安装到由 $(TARGET_DIR)
给出的目录中。只需安装软件包执行所需的文件。当目标文件系统最终确定时,头文件、静态库和文档将被删除。LIBFOO_INSTALL_STAGING_CMDS
lists the actions to be
performed to install the package to the staging directory, when the
package is a target package. The package must install its files to
the directory given by $(STAGING_DIR)
. All development files
should be installed, since they might be needed to compile other
packages.
LIBFOO_INSTALL_STAGING_CMDS
列出了在将软件包安装到暂存目录时要执行的操作,当软件包是目标软件包时。软件包必须将其文件安装到由 $(STAGING_DIR)
给出的目录中。应安装所有开发文件,因为它们可能需要用于编译其他软件包。LIBFOO_INSTALL_IMAGES_CMDS
lists the actions to be performed to
install the package to the images directory, when the package is a
target package. The package must install its files to the directory
given by $(BINARIES_DIR)
. Only files that are binary images (aka
images) that do not belong in the TARGET_DIR
but are necessary
for booting the board should be placed here. For example, a package
should utilize this step if it has binaries which would be similar
to the kernel image, bootloader or root filesystem images.
LIBFOO_INSTALL_IMAGES_CMDS
列出了在将软件包安装到图像目录时要执行的操作,当软件包是目标软件包时。软件包必须将其文件安装到由 $(BINARIES_DIR)
给出的目录中。只能将二进制图像(也称为图像)文件放在这里,这些文件不属于 TARGET_DIR
,但对于引导板是必要的。例如,如果软件包具有类似于内核映像、引导加载程序或根文件系统映像的二进制文件,则应使用此步骤。LIBFOO_INSTALL_INIT_SYSV
, LIBFOO_INSTALL_INIT_OPENRC
and
LIBFOO_INSTALL_INIT_SYSTEMD
list the actions to install init
scripts either for the systemV-like init systems (busybox,
sysvinit, etc.), openrc or for the systemd units. These commands
will be run only when the relevant init system is installed (i.e.
if systemd is selected as the init system in the configuration,
only LIBFOO_INSTALL_INIT_SYSTEMD
will be run). The only exception
is when openrc is chosen as init system and LIBFOO_INSTALL_INIT_OPENRC
has not been set, in such situation LIBFOO_INSTALL_INIT_SYSV
will
be called, since openrc supports sysv init scripts.
When systemd is used as the init system, buildroot will automatically enable
all services using the systemctl preset-all
command in the final phase of
image building. You can add preset files to prevent a particular unit from
being automatically enabled by buildroot.
LIBFOO_INSTALL_INIT_SYSV
, LIBFOO_INSTALL_INIT_OPENRC
和 LIBFOO_INSTALL_INIT_SYSTEMD
列出了安装 init 脚本的操作,可以用于 systemV 类似的 init 系统(busybox,sysvinit 等),openrc 或
systemd 单元。这些命令只有在相关的 init 系统安装时才会运行(即如果在配置中选择 systemd 作为 init 系统,则只会运行 LIBFOO_INSTALL_INIT_SYSTEMD
)。唯一的例外是当选择 openrc 作为 init 系统且未设置 LIBFOO_INSTALL_INIT_OPENRC
时,在这种情况下将调用 LIBFOO_INSTALL_INIT_SYSV
,因为 openrc 支持 sysv init 脚本。当 systemd 用作 init 系统时,buildroot 将在镜像构建的最后阶段使用 systemctl preset-all
命令自动启用所有服务。您可以添加预设文件以防止 buildroot 自动启用特定单元。LIBFOO_HELP_CMDS
lists the actions to print the package help, which
is included to the main make help
output. These commands can print
anything in any format.
This is seldom used, as packages rarely have custom rules. Do not use
this variable, unless you really know that you need to print help.
LIBFOO_HELP_CMDS
列出了打印软件包帮助的操作,该操作包含在主 make help
输出中。这些命令可以以任何格式打印任何内容。这很少使用,因为软件包很少具有自定义规则。除非您真的知道需要打印帮助,否则不要使用此变量。LIBFOO_LINUX_CONFIG_FIXUPS
lists the Linux kernel configuration
options that are needed to build and use this package, and without
which the package is fundamentally broken. This shall be a set of
calls to one of the kconfig tweaking option: KCONFIG_ENABLE_OPT
,
KCONFIG_DISABLE_OPT
, or KCONFIG_SET_OPT
.
This is seldom used, as package usually have no strict requirements on
the kernel options.
LIBFOO_LINUX_CONFIG_FIXUPS
列出了构建和使用此软件包所需的 Linux 内核配置选项,没有这些选项,软件包将无法正常工作。这将是对 kconfig 调整选项之一的一组调用: KCONFIG_ENABLE_OPT
, KCONFIG_DISABLE_OPT
或 KCONFIG_SET_OPT
。这很少使用,因为软件包通常对内核选项没有严格要求。The preferred way to define these variables is:
定义这些变量的首选方法是:
define LIBFOO_CONFIGURE_CMDS action 1 action 2 action 3 endef
In the action definitions, you can use the following variables:
在操作定义中,您可以使用以下变量:
$(LIBFOO_PKGDIR)
contains the path to the directory containing the
libfoo.mk
and Config.in
files. This variable is useful when it is
necessary to install a file bundled in Buildroot, like a runtime
configuration file, a splashscreen image…
$(LIBFOO_PKGDIR)
包含包含 libfoo.mk
和 Config.in
文件的目录的路径。当需要安装 Buildroot 中捆绑的文件时,例如运行时配置文件、启动画面图像时,此变量非常有用...$(@D)
, which contains the directory in which the package source
code has been uncompressed.
$(@D)
包含已解压缩软件包源代码的目录。$(LIBFOO_DL_DIR)
contains the path to the directory where all the downloads
made by Buildroot for libfoo
are stored in.
$(LIBFOO_DL_DIR)
包含了 Buildroot 为 libfoo
下载的所有文件存储的目录路径。$(TARGET_CC)
, $(TARGET_LD)
, etc. to get the target
cross-compilation utilities
$(TARGET_CC)
, $(TARGET_LD)
,等等,用于获取目标交叉编译工具。$(TARGET_CROSS)
to get the cross-compilation toolchain prefix
$(TARGET_CROSS)
用于获取交叉编译工具链前缀。$(HOST_DIR)
, $(STAGING_DIR)
and $(TARGET_DIR)
variables to install the packages properly. Those variables point to
the global host, staging and target directories, unless
per-package directory support is used, in which case they point to
the current package host, staging and target directories. In
both cases, it doesn’t make any difference from the package point of
view: it should simply use HOST_DIR
, STAGING_DIR
and
TARGET_DIR
. See Section 8.12, “Top-level parallel build” for more details
about per-package directory support.
$(HOST_DIR)
, $(STAGING_DIR)
和 $(TARGET_DIR)
变量用于正确安装软件包。这些变量指向全局主机、暂存和目标目录,除非使用每个软件包目录支持,此时它们指向当前软件包主机、暂存和目标目录。在这两种情况下,从软件包的角度来看并没有任何区别:它应该简单地使用 HOST_DIR
, STAGING_DIR
和 TARGET_DIR
。有关每个软件包目录支持的更多详细信息,请参见第 8.12 节“顶层并行构建”。Finally, you can also use hooks. See Section 18.23, “Hooks available in the various build steps” for more information.
最后,您还可以使用钩子。有关更多信息,请参见第 18.23 节“各构建步骤中可用的钩子”。
First, let’s see how to write a .mk
file for an autotools-based
package, with an example :
首先,让我们看看如何为基于 autotools 的软件包编写 .mk
文件,附带示例:
01: ################################################################################ 02: # 03: # libfoo 04: # 05: ################################################################################ 06: 07: LIBFOO_VERSION = 1.0 08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz 09: LIBFOO_SITE = http://www.foosoftware.org/download 10: LIBFOO_INSTALL_STAGING = YES 11: LIBFOO_INSTALL_TARGET = NO 12: LIBFOO_CONF_OPTS = --disable-shared 13: LIBFOO_DEPENDENCIES = libglib2 host-pkgconf 14: 15: $(eval $(autotools-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball (xz-ed tarball recommended)
and the location of the tarball on the Web. Buildroot will automatically
download the tarball from this location.
在第 8 和 9 行,我们声明了 tarball 的名称(建议使用 xz-ed tarball)和 tarball 在 Web 上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10, we tell Buildroot to install the package to the staging
directory. The staging directory, located in output/staging/
is the directory where all the packages are installed, including their
development files, etc. By default, packages are not installed to the
staging directory, since usually, only libraries need to be installed in
the staging directory: their development files are needed to compile
other libraries or applications depending on them. Also by default, when
staging installation is enabled, packages are installed in this location
using the make install
command.
在第 10 行,我们告诉 Buildroot 将软件包安装到暂存目录中。暂存目录位于 output/staging/
,是所有软件包安装的目录,包括它们的开发文件等。默认情况下,软件包不会安装到暂存目录,因为通常只有库需要安装到暂存目录:它们的开发文件需要用于编译依赖于它们的其他库或应用程序。同样,默认情况下,启用暂存安装时,软件包将使用 make install
命令安装在此位置。
On line 11, we tell Buildroot to not install the package to the
target directory. This directory contains what will become the root
filesystem running on the target. For purely static libraries, it is
not necessary to install them in the target directory because they will
not be used at runtime. By default, target installation is enabled; setting
this variable to NO is almost never needed. Also by default, packages are
installed in this location using the make install
command.
在
第 11 行,我们告诉 Buildroot
不要将软件包安装到目标目录中。该目录包含将在目标设备上运行的根文件系统。对于纯静态库,不必将其安装到目标目录中,因为它们在运行时不会被使用。默认
情况下,目标安装是启用的;将此变量设置为 NO 几乎是不需要的。默认情况下,软件包使用 make install
命令安装在此位置。
On line 12, we tell Buildroot to pass a custom configure option, that
will be passed to the ./configure
script before configuring
and building the package.
在第 12 行,我们告诉 Buildroot 传递一个自定义配置选项,该选项将在配置和构建软件包之前传递给 ./configure
脚本。
On line 13, we declare our dependencies, so that they are built
before the build process of our package starts.
在第 13 行,我们声明我们的依赖关系,以便它们在我们的软件包构建过程开始之前构建。
Finally, on line line 15, we invoke the autotools-package
macro that generates all the Makefile rules that actually allows the
package to be built.
最后,在第 15 行,我们调用生成实际允许构建软件包的所有 Makefile 规则的 autotools-package
宏。
The main macro of the autotools package infrastructure is
autotools-package
. It is similar to the generic-package
macro. The ability to
have target and host packages is also available, with the
host-autotools-package
macro.
autotools 软件包基础设施的主要宏是 autotools-package
。它类似于 generic-package
宏。还可以使用 host-autotools-package
宏来拥有目标和主机软件包。
Just like the generic infrastructure, the autotools infrastructure
works by defining a number of variables before calling the
autotools-package
macro.
就像通用基础设施一样,autotools 基础设施是通过在调用 autotools-package
宏之前定义一些变量来工作的。
First, all the package metadata information variables that exist in the
generic infrastructure also exist in the autotools infrastructure:
LIBFOO_VERSION
, LIBFOO_SOURCE
,
LIBFOO_PATCH
, LIBFOO_SITE
,
LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
,
LIBFOO_INSTALL_STAGING
, LIBFOO_INSTALL_TARGET
.
首先,在通用基础设施中存在的所有软件包元数据信息变量在 autotools 基础设施中也存在: LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
, LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
, LIBFOO_INSTALL_TARGET
。
A few additional variables, specific to the autotools infrastructure,
can also be defined. Many of them are only useful in very specific
cases, typical packages will therefore only use a few of them.
还可以定义一些特定于 autotools 基础设施的附加变量。其中许多只在非常特定的情况下有用,典型的软件包因此只会使用其中的一部分。
LIBFOO_SUBDIR
may contain the name of a subdirectory
inside the package that contains the configure script. This is useful,
if for example, the main configure script is not at the root of the
tree extracted by the tarball. If HOST_LIBFOO_SUBDIR
is
not specified, it defaults to LIBFOO_SUBDIR
.
LIBFOO_SUBDIR
可能包含包含配置脚本的包内子目录的名称。例如,如果主配置脚本不在 tarball 提取的树的根目录下,则这很有用。如果未指定 HOST_LIBFOO_SUBDIR
,则默认为 LIBFOO_SUBDIR
。LIBFOO_CONF_ENV
, to specify additional environment
variables to pass to the configure script. By default, empty.
LIBFOO_CONF_ENV
,用于指定要传递给配置脚本的额外环境变量。默认为空。LIBFOO_CONF_OPTS
, to specify additional configure
options to pass to the configure script. By default, empty.
LIBFOO_CONF_OPTS
,用于指定要传递给配置脚本的额外配置选项。默认为空。LIBFOO_MAKE
, to specify an alternate make
command. This is typically useful when parallel make is enabled in
the configuration (using BR2_JLEVEL
) but that this
feature should be disabled for the given package, for one reason or
another. By default, set to $(MAKE)
. If parallel building
is not supported by the package, then it should be set to
LIBFOO_MAKE=$(MAKE1)
.
LIBFOO_MAKE
,以指定替代的 make
命令。当配置中启用并行构建(使用 BR2_JLEVEL
)但对于某种原因应禁用此功能以针对特定软件包时,通常很有用。默认设置为 $(MAKE)
。如果软件包不支持并行构建,则应设置为 LIBFOO_MAKE=$(MAKE1)
。LIBFOO_MAKE_ENV
, to specify additional environment
variables to pass to make in the build step. These are passed before
the make
command. By default, empty.
LIBFOO_MAKE_ENV
,以指定传递给构建步骤中 make 的额外环境变量。这些变量在 make
命令之前传递。默认为空。LIBFOO_MAKE_OPTS
, to specify additional variables to
pass to make in the build step. These are passed after the
make
command. By default, empty.
LIBFOO_MAKE_OPTS
,以指定传递给构建步骤中 make 的额外变量。这些变量在 make
命令之后传递。默认为空。LIBFOO_AUTORECONF
, tells whether the package should
be autoreconfigured or not (i.e. if the configure script and
Makefile.in files should be re-generated by re-running autoconf,
automake, libtool, etc.). Valid values are YES
and
NO
. By default, the value is NO
LIBFOO_AUTORECONF
,指示是否应自动重新配置软件包(即是否应通过重新运行 autoconf、automake、libtool 等来重新生成 configure 脚本和 Makefile.in 文件)。有效值为 YES
和 NO
。默认情况下,该值为 NO
LIBFOO_AUTORECONF_ENV
, to specify additional environment
variables to pass to the autoreconf program if
LIBFOO_AUTORECONF=YES
. These are passed in the environment of
the autoreconf command. By default, empty.
LIBFOO_AUTORECONF_ENV
,用于指定传递给 autoreconf 程序的其他环境变量,如果 LIBFOO_AUTORECONF=YES
。这些变量将传递给 autoreconf 命令的环境。默认为空。LIBFOO_AUTORECONF_OPTS
to specify additional options
passed to the autoreconf program if
LIBFOO_AUTORECONF=YES
. By default, empty.
LIBFOO_AUTORECONF_OPTS
用于指定传递给 autoreconf 程序的其他选项,如果 LIBFOO_AUTORECONF=YES
。默认为空。LIBFOO_AUTOPOINT
, tells whether the package should be
autopointed or not (i.e. if the package needs I18N infrastructure
copied in.) Only valid when LIBFOO_AUTORECONF=YES
. Valid
values are YES
and NO
. The default is NO
.
LIBFOO_AUTOPOINT
,指示包是否应该自动指向(即包是否需要复制 I18N 基础设施)。仅在 LIBFOO_AUTORECONF=YES
有效。有效值为 YES
和 NO
。默认值为 NO
。LIBFOO_LIBTOOL_PATCH
tells whether the Buildroot
patch to fix libtool cross-compilation issues should be applied or
not. Valid values are YES
and NO
. By
default, the value is YES
LIBFOO_LIBTOOL_PATCH
指示是否应用 Buildroot 补丁以解决 libtool 交叉编译问题。有效值为 YES
和 NO
。默认情况下,该值为 YES
。
LIBFOO_INSTALL_STAGING_OPTS
contains the make options
used to install the package to the staging directory. By default, the
value is DESTDIR=$(STAGING_DIR) install
, which is
correct for most autotools packages. It is still possible to override
it.
LIBFOO_INSTALL_STAGING_OPTS
包含用于将软件包安装到分段目录的 make 选项。默认情况下,该值为 DESTDIR=$(STAGING_DIR) install
,对大多数 autotools 软件包而言是正确的。仍然可以覆盖它。LIBFOO_INSTALL_TARGET_OPTS
contains the make options
used to install the package to the target directory. By default, the
value is DESTDIR=$(TARGET_DIR) install
. The default
value is correct for most autotools packages, but it is still possible
to override it if needed.
LIBFOO_INSTALL_TARGET_OPTS
包含用于将软件包安装到目标目录的制作选项。默认情况下,该值为 DESTDIR=$(TARGET_DIR) install
。对于大多数 autotools 软件包来说,默认值是正确的,但如果需要,仍然可以覆盖它。With the autotools infrastructure, all the steps required to build
and install the packages are already defined, and they generally work
well for most autotools-based packages. However, when required, it is
still possible to customize what is done in any particular step:
使用 autotools 基础设施,构建和安装软件包所需的所有步骤已经定义,并且它们通常适用于大多数基于 autotools 的软件包。但是,如果需要,仍然可以自定义在任何特定步骤中执行的操作:
.mk
file defines its
own LIBFOO_CONFIGURE_CMDS
variable, it will be used
instead of the default autotools one. However, using this method
should be restricted to very specific cases. Do not use it in the
general case.
.mk
文件定义了自己的 LIBFOO_CONFIGURE_CMDS
变量,它将被用来代替默认的 autotools 变量。然而,应该将使用这种方法限制在非常特定的情况下。不要在一般情况下使用它。First, let’s see how to write a .mk
file for a CMake-based package,
with an example :
首先,让我们看看如何为基于 CMake 的软件包编写一个 .mk
文件,附带一个示例:
01: ################################################################################ 02: # 03: # libfoo 04: # 05: ################################################################################ 06: 07: LIBFOO_VERSION = 1.0 08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz 09: LIBFOO_SITE = http://www.foosoftware.org/download 10: LIBFOO_INSTALL_STAGING = YES 11: LIBFOO_INSTALL_TARGET = NO 12: LIBFOO_CONF_OPTS = -DBUILD_DEMOS=ON 13: LIBFOO_DEPENDENCIES = libglib2 host-pkgconf 14: 15: $(eval $(cmake-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball (xz-ed tarball recommended)
and the location of the tarball on the Web. Buildroot will automatically
download the tarball from this location.
在第 8 和 9 行,我们声明了 tarball 的名称(建议使用 xz-ed tarball)和 tarball 在 Web 上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10, we tell Buildroot to install the package to the staging
directory. The staging directory, located in output/staging/
is the directory where all the packages are installed, including their
development files, etc. By default, packages are not installed to the
staging directory, since usually, only libraries need to be installed in
the staging directory: their development files are needed to compile
other libraries or applications depending on them. Also by default, when
staging installation is enabled, packages are installed in this location
using the make install
command.
在第 10 行,我们告诉 Buildroot 将软件包安装到暂存目录中。暂存目录位于 output/staging/
,是所有软件包安装的目录,包括它们的开发文件等。默认情况下,软件包不会安装到暂存目录,因为通常只有库需要安装到暂存目录:它们的开发文件需要用于编译依赖于它们的其他库或应用程序。同样,默认情况下,启用暂存安装时,软件包将使用 make install
命令安装在此位置。
On line 11, we tell Buildroot to not install the package to the
target directory. This directory contains what will become the root
filesystem running on the target. For purely static libraries, it is
not necessary to install them in the target directory because they will
not be used at runtime. By default, target installation is enabled; setting
this variable to NO is almost never needed. Also by default, packages are
installed in this location using the make install
command.
在
第 11 行,我们告诉 Buildroot
不要将软件包安装到目标目录中。该目录包含将在目标设备上运行的根文件系统。对于纯静态库,不必将其安装到目标目录中,因为它们在运行时不会被使用。默认
情况下,目标安装是启用的;将此变量设置为 NO 几乎是不需要的。默认情况下,软件包使用 make install
命令安装在此位置。
On line 12, we tell Buildroot to pass custom options to CMake when it is
configuring the package.
在第 12 行,我们告诉 Buildroot 在配置软件包时向 CMake 传递自定义选项。
On line 13, we declare our dependencies, so that they are built
before the build process of our package starts.
在第 13 行,我们声明我们的依赖关系,以便它们在我们的软件包构建过程开始之前构建。
Finally, on line line 15, we invoke the cmake-package
macro that generates all the Makefile rules that actually allows the
package to be built.
最后,在第 15 行,我们调用生成实际允许构建软件包的所有 Makefile 规则的 cmake-package
宏。
The main macro of the CMake package infrastructure is
cmake-package
. It is similar to the generic-package
macro. The ability to
have target and host packages is also available, with the
host-cmake-package
macro.
CMake 软件包基础设施的主要宏是 cmake-package
。它类似于 generic-package
宏。还可以使用 host-cmake-package
宏来拥有目标和主机软件包。
Just like the generic infrastructure, the CMake infrastructure works
by defining a number of variables before calling the cmake-package
macro.
就像通用基础设施一样,CMake 基础设施通过在调用 cmake-package
宏之前定义多个变量来工作。
First, all the package metadata information variables that exist in
the generic infrastructure also exist in the CMake infrastructure:
LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
,
LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
,
LIBFOO_INSTALL_TARGET
.
首先,所有存在于通用基础设施中的软件包元数据信息变量也存在于 CMake 基础设施中: LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
, LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
, LIBFOO_INSTALL_TARGET
。
A few additional variables, specific to the CMake infrastructure, can
also be defined. Many of them are only useful in very specific cases,
typical packages will therefore only use a few of them.
还可以定义一些特定于 CMake 基础设施的附加变量。其中许多只在非常特定的情况下有用,典型的软件包因此只会使用其中的一部分。
LIBFOO_SUBDIR
may contain the name of a subdirectory inside the
package that contains the main CMakeLists.txt file. This is useful,
if for example, the main CMakeLists.txt file is not at the root of
the tree extracted by the tarball. If HOST_LIBFOO_SUBDIR
is not
specified, it defaults to LIBFOO_SUBDIR
.
LIBFOO_SUBDIR
可能包含包含主 CMakeLists.txt 文件的包内子目录的名称。例如,如果主 CMakeLists.txt 文件不在 tarball 提取的树的根目录下,这将很有用。如果未指定 HOST_LIBFOO_SUBDIR
,则默认为 LIBFOO_SUBDIR
。LIBFOO_CMAKE_BACKEND
specifies the cmake backend to use, one of
make
(to use the GNU Makefiles generator, the default) or ninja
(to use the Ninja generator).
LIBFOO_CMAKE_BACKEND
指定要使用的 CMake 后端之一,即 make
(使用 GNU Makefiles 生成器,默认值)或 ninja
(使用 Ninja 生成器)。LIBFOO_CONF_ENV
, to specify additional environment variables to
pass to CMake. By default, empty.
LIBFOO_CONF_ENV
,用于指定要传递给 CMake 的额外环境变量。默认为空。
LIBFOO_CONF_OPTS
, to specify additional configure options to pass
to CMake. By default, empty. A number of common CMake options are
set by the cmake-package
infrastructure; so it is normally not
necessary to set them in the package’s *.mk
file unless you want
to override them:
LIBFOO_CONF_OPTS
,用于指定传递给 CMake 的额外配置选项。默认为空。一些常见的 CMake 选项由 cmake-package
基础设施设置;因此,通常不需要在软件包的 *.mk
文件中设置它们,除非您想要覆盖它们:
CMAKE_BUILD_TYPE
is driven by BR2_ENABLE_RUNTIME_DEBUG
;
CMAKE_BUILD_TYPE
由 BR2_ENABLE_RUNTIME_DEBUG
驱动;CMAKE_INSTALL_PREFIX
;
BUILD_SHARED_LIBS
is driven by BR2_STATIC_LIBS
;
BUILD_SHARED_LIBS
由 BR2_STATIC_LIBS
驱动;BUILD_DOC
, BUILD_DOCS
are disabled;
BUILD_DOC
, BUILD_DOCS
已禁用;BUILD_EXAMPLE
, BUILD_EXAMPLES
are disabled;
BUILD_EXAMPLE
, BUILD_EXAMPLES
已禁用;BUILD_TEST
, BUILD_TESTS
, BUILD_TESTING
are disabled.
BUILD_TEST
, BUILD_TESTS
, BUILD_TESTING
已禁用。LIBFOO_BUILD_ENV
and LIBFOO_BUILD_OPTS
to specify additional
environment variables, or command line options, to pass to the backend
at build time.
LIBFOO_BUILD_ENV
和 LIBFOO_BUILD_OPTS
用于在构建时指定额外的环境变量或命令行选项,传递给后端。LIBFOO_SUPPORTS_IN_SOURCE_BUILD = NO
should be set when the package
cannot be built inside the source tree but needs a separate build
directory.
LIBFOO_SUPPORTS_IN_SOURCE_BUILD = NO
。LIBFOO_MAKE
, to specify an alternate make
command. This is
typically useful when parallel make is enabled in the configuration
(using BR2_JLEVEL
) but that this feature should be disabled for
the given package, for one reason or another. By default, set to
$(MAKE)
. If parallel building is not supported by the package,
then it should be set to LIBFOO_MAKE=$(MAKE1)
.
LIBFOO_MAKE
,以指定替代的 make
命令。当配置中启用并行构建(使用 BR2_JLEVEL
)但对于某种原因应禁用此功能以针对特定软件包时,通常很有用。默认设置为 $(MAKE)
。如果软件包不支持并行构建,则应设置为 LIBFOO_MAKE=$(MAKE1)
。LIBFOO_MAKE_ENV
, to specify additional environment variables to
pass to make in the build step. These are passed before the make
command. By default, empty.
LIBFOO_MAKE_ENV
,以指定传递给构建步骤中 make 的额外环境变量。这些变量在 make
命令之前传递。默认为空。LIBFOO_MAKE_OPTS
, to specify additional variables to pass to make
in the build step. These are passed after the make
command. By
default, empty.
LIBFOO_MAKE_OPTS
,以指定传递给构建步骤中 make 的额外变量。这些变量在 make
命令之后传递。默认为空。LIBFOO_INSTALL_OPTS
contains the make options used to
install the package to the host directory. By default, the value
is install
, which is correct for most CMake packages. It is still
possible to override it.
LIBFOO_INSTALL_OPTS
包含用于将软件包安装到主机目录的制作选项。默认情况下,该值为 install
,对于大多数 CMake 软件包来说是正确的。仍然可以覆盖它。LIBFOO_INSTALL_STAGING_OPTS
contains the make options used to
install the package to the staging directory. By default, the value
is DESTDIR=$(STAGING_DIR) install/fast
, which is correct for most
CMake packages. It is still possible to override it.
LIBFOO_INSTALL_STAGING_OPTS
包含用于将软件包安装到暂存目录的制作选项。默认情况下,该值为 DESTDIR=$(STAGING_DIR) install/fast
,对于大多数 CMake 软件包来说是正确的。仍然可以覆盖它。LIBFOO_INSTALL_TARGET_OPTS
contains the make options used to
install the package to the target directory. By default, the value
is DESTDIR=$(TARGET_DIR) install/fast
. The default value is correct
for most CMake packages, but it is still possible to override it if
needed.
LIBFOO_INSTALL_TARGET_OPTS
包含用于将软件包安装到目标目录的制作选项。默认情况下,该值为 DESTDIR=$(TARGET_DIR) install/fast
。大多数 CMake 软件包的默认值是正确的,但如果需要,仍然可以覆盖它。With the CMake infrastructure, all the steps required to build and
install the packages are already defined, and they generally work well
for most CMake-based packages. However, when required, it is still
possible to customize what is done in any particular step:
使用 CMake 基础设施,构建和安装软件包所需的所有步骤已经定义好,通常适用于大多数基于 CMake 的软件包。但是,如果需要,仍然可以自定义任何特定步骤中所做的工作:
.mk
file defines its own
LIBFOO_CONFIGURE_CMDS
variable, it will be used instead of the
default CMake one. However, using this method should be restricted
to very specific cases. Do not use it in the general case.
.mk
文件定义了自己的 LIBFOO_CONFIGURE_CMDS
变量,它将被用来替代默认的 CMake 变量。然而,应该将此方法限制在非常特定的情况下使用。不要在一般情况下使用它。This infrastructure applies to Python packages that use the standard
Python setuptools, pep517, flit or maturin mechanisms as their build
system, generally recognizable by the usage of a setup.py
script or
pyproject.toml
file.
该基础设施适用于使用标准 Python setuptools、pep517、flit 或 maturin 机制作为构建系统的 Python 软件包,通常通过使用 setup.py
脚本或 pyproject.toml
文件来识别。
First, let’s see how to write a .mk
file for a Python package,
with an example :
首先,让我们看看如何为 Python 软件包编写 .mk
文件,附带一个示例:
01: ################################################################################ 02: # 03: # python-foo 04: # 05: ################################################################################ 06: 07: PYTHON_FOO_VERSION = 1.0 08: PYTHON_FOO_SOURCE = python-foo-$(PYTHON_FOO_VERSION).tar.xz 09: PYTHON_FOO_SITE = http://www.foosoftware.org/download 10: PYTHON_FOO_LICENSE = BSD-3-Clause 11: PYTHON_FOO_LICENSE_FILES = LICENSE 12: PYTHON_FOO_ENV = SOME_VAR=1 13: PYTHON_FOO_DEPENDENCIES = libmad 14: PYTHON_FOO_SETUP_TYPE = setuptools 15: 16: $(eval $(python-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball (xz-ed tarball
recommended) and the location of the tarball on the Web. Buildroot
will automatically download the tarball from this location.
在第 8 和 9 行,我们声明了 tarball 的名称(建议使用 xz-ed tarball)和 tarball 在 Web 上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10 and 11, we give licensing details about the package (its
license on line 10, and the file containing the license text on line
11).
在第 10 行和第 11 行,我们提供有关软件包的许可详细信息(第 10 行上的许可证,以及第 11 行上包含许可证文本的文件)。
On line 12, we tell Buildroot to pass custom options to the Python
setup.py
script when it is configuring the package.
在第 12 行,我们告诉 Buildroot 在配置软件包时将自定义选项传递给 Python setup.py
脚本。
On line 13, we declare our dependencies, so that they are built
before the build process of our package starts.
在第 13 行,我们声明我们的依赖关系,以便它们在我们的软件包构建过程开始之前构建。
On line 14, we declare the specific Python build system being used. In
this case the setuptools
Python build system is used. The five
supported ones are flit
, pep517
, setuptools
, setuptools-rust
and maturin
.
在第 14 行,我们声明正在使用的特定 Python 构建系统。在这种情况下,使用 setuptools
Python 构建系统。支持的五种构建系统是 flit
、 pep517
、 setuptools
、 setuptools-rust
和 maturin
。
Finally, on line 16, we invoke the python-package
macro that
generates all the Makefile rules that actually allow the package to be
built.
最后,在第 16 行,我们调用生成实际允许构建软件包的所有 Makefile 规则的 python-package
宏。
As a policy, packages that merely provide Python modules should all be
named python-<something>
in Buildroot. Other packages that use the
Python build system, but are not Python modules, can freely choose
their name (existing examples in Buildroot are scons
and
supervisor
).
作为政策,仅提供 Python 模块的软件包在 Buildroot 中应全部命名为 python-<something>
。其他使用 Python 构建系统但不是 Python 模块的软件包可以自由选择它们的名称(Buildroot 中的现有示例是 scons
和 supervisor
)。
The main macro of the Python package infrastructure is
python-package
. It is similar to the generic-package
macro. It is
also possible to create Python host packages with the
host-python-package
macro.
Python 软件包基础设施的主要宏是 python-package
。它类似于 generic-package
宏。还可以使用 host-python-package
宏创建 Python 主机软件包。
Just like the generic infrastructure, the Python infrastructure works
by defining a number of variables before calling the python-package
or host-python-package
macros.
就像通用基础设施一样,Python 基础设施通过在调用 python-package
或 host-python-package
宏之前定义多个变量来工作。
All the package metadata information variables that exist in the
generic package infrastructure also
exist in the Python infrastructure: PYTHON_FOO_VERSION
,
PYTHON_FOO_SOURCE
, PYTHON_FOO_PATCH
, PYTHON_FOO_SITE
,
PYTHON_FOO_SUBDIR
, PYTHON_FOO_DEPENDENCIES
, PYTHON_FOO_LICENSE
,
PYTHON_FOO_LICENSE_FILES
, PYTHON_FOO_INSTALL_STAGING
, etc.
所有存在于通用软件包基础设施中的软件包元数据信息变量也存在于 Python 基础设施中: PYTHON_FOO_VERSION
, PYTHON_FOO_SOURCE
, PYTHON_FOO_PATCH
, PYTHON_FOO_SITE
, PYTHON_FOO_SUBDIR
, PYTHON_FOO_DEPENDENCIES
, PYTHON_FOO_LICENSE
, PYTHON_FOO_LICENSE_FILES
, PYTHON_FOO_INSTALL_STAGING
,等。
Note that: 请注意:
python
or host-python
in the
PYTHON_FOO_DEPENDENCIES
variable of a package, since these basic
dependencies are automatically added as needed by the Python
package infrastructure.
PYTHON_FOO_DEPENDENCIES
变量中不需要添加 python
或 host-python
,因为这些基本依赖项会根据需要自动添加到 Python 软件包基础设施中。host-python-setuptools
to
PYTHON_FOO_DEPENDENCIES
for setuptools-based packages, since it’s
automatically added by the Python infrastructure as needed.
host-python-setuptools
添加到 PYTHON_FOO_DEPENDENCIES
中,因为 Python 基础设施会根据需要自动添加它。One variable specific to the Python infrastructure is mandatory:
Python 基础设施中一个特定的变量是强制性的:
PYTHON_FOO_SETUP_TYPE
, to define which Python build system is used
by the package. The five supported values are flit
, pep517
and
setuptools
, setuptools-rust
and maturin
. If you don’t know
which one is used in your package, look at the setup.py
or
pyproject.toml
file in your package source code, and see whether
it imports things from the flit
module or the setuptools
module. If the package is using a pyproject.toml
file without any
build-system requires and with a local in-tree backend-path one
should use pep517
.
PYTHON_FOO_SETUP_TYPE
,用于定义包使用的 Python 构建系统。支持的五个值分别是 flit
, pep517
和 setuptools
, setuptools-rust
和 maturin
。如果您不知道包中使用的是哪个,请查看包源代码中的 setup.py
或 pyproject.toml
文件,看它是否从 flit
模块或 setuptools
模块导入内容。如果包使用一个没有任何构建系统要求和带有本地 in-tree 后端路径的 pyproject.toml
文件,则应使用 pep517
。A few additional variables, specific to the Python infrastructure, can
optionally be defined, depending on the package’s needs. Many of them
are only useful in very specific cases, typical packages will
therefore only use a few of them, or none.
Python 基础设施中还可以选择定义一些额外的变量,具体取决于包的需求。其中许多变量只在非常特定的情况下有用,因此典型的包可能只使用其中的一些,或者一个也不使用。
PYTHON_FOO_SUBDIR
may contain the name of a subdirectory inside the
package that contains the main setup.py
or pyproject.toml
file.
This is useful, if for example, the main setup.py
or pyproject.toml
file is not at the root of the tree extracted by the tarball. If
HOST_PYTHON_FOO_SUBDIR
is not specified, it defaults to
PYTHON_FOO_SUBDIR
.
PYTHON_FOO_SUBDIR
可能包含包含主 setup.py
或 pyproject.toml
文件的包内子目录的名称。例如,如果主 setup.py
或 pyproject.toml
文件不在 tarball 提取的树的根目录下,则这是有用的。如果未指定 HOST_PYTHON_FOO_SUBDIR
,则默认为 PYTHON_FOO_SUBDIR
。PYTHON_FOO_ENV
, to specify additional environment variables to
pass to the Python setup.py
script (for setuptools packages) or
the support/scripts/pyinstaller.py
script (for flit/pep517
packages) for both the build and install steps. Note that the
infrastructure is automatically passing several standard variables,
defined in PKG_PYTHON_SETUPTOOLS_ENV
(for setuptools target
packages), HOST_PKG_PYTHON_SETUPTOOLS_ENV
(for setuptools host
packages), PKG_PYTHON_PEP517_ENV
(for flit/pep517 target packages)
and HOST_PKG_PYTHON_PEP517_ENV
(for flit/pep517 host packages).
PYTHON_FOO_ENV
,用于指定要传递给 Python setup.py
脚本(用于 setuptools 包)或 support/scripts/pyinstaller.py
脚本(用于 flit/pep517 包)的附加环境变量,用于构建和安装步骤。请注意,基础设施会自动传递几个标准变量,定义在 PKG_PYTHON_SETUPTOOLS_ENV
(用于 setuptools 目标包)、 HOST_PKG_PYTHON_SETUPTOOLS_ENV
(用于 setuptools 主机包)、 PKG_PYTHON_PEP517_ENV
(用于 flit/pep517 目标包)和 HOST_PKG_PYTHON_PEP517_ENV
(用于 flit/pep517 主机包)中。PYTHON_FOO_BUILD_OPTS
, to specify additional options to pass to
the Python setup.py
script during the build step, this generally
only makes sense to use for setuptools based packages as flit/pep517
based packages do not pass these options to a setup.py
script but
instead pass them to support/scripts/pyinstaller.py
.
PYTHON_FOO_BUILD_OPTS
,用于在构建步骤期间传递给 Python setup.py
脚本的附加选项,这通常只对基于 setuptools 的包有意义,因为基于 flit/pep517 的包不会将这些选项传递给 setup.py
脚本,而是将它们传递给 support/scripts/pyinstaller.py
。PYTHON_FOO_INSTALL_TARGET_OPTS
, PYTHON_FOO_INSTALL_STAGING_OPTS
,
HOST_PYTHON_FOO_INSTALL_OPTS
to specify additional options to pass
to the Python setup.py
script (for setuptools packages) or
support/scripts/pyinstaller.py
(for flit/pep517 packages) during
the target installation step, the staging installation step or the
host installation, respectively.
PYTHON_FOO_INSTALL_TARGET_OPTS
, PYTHON_FOO_INSTALL_STAGING_OPTS
, HOST_PYTHON_FOO_INSTALL_OPTS
来指定传递给 Python setup.py
脚本(用于 setuptools 包)或 support/scripts/pyinstaller.py
(用于 flit/pep517 包)的额外选项,分别在目标安装步骤、分段安装步骤或主机安装期间。With the Python infrastructure, all the steps required to build and
install the packages are already defined, and they generally work well
for most Python-based packages. However, when required, it is still
possible to customize what is done in any particular step:
使用 Python 基础设施,构建和安装软件包所需的所有步骤已经定义,并且它们通常适用于大多数基于 Python 的软件包。但是,如果需要,仍然可以自定义在任何特定步骤中执行的操作。
.mk
file defines its own
PYTHON_FOO_BUILD_CMDS
variable, it will be used instead of the
default Python one. However, using this method should be restricted
to very specific cases. Do not use it in the general case.
.mk
文件定义了自己的 PYTHON_FOO_BUILD_CMDS
变量,它将被使用,而不是默认的 Python 变量。但是,应该将使用此方法限制在非常特定的情况下。不要在一般情况下使用它。If the Python package for which you would like to create a Buildroot
package is available on PyPI, you may want to use the scanpypi
tool
located in utils/
to automate the process.
如果您想为其创建 Buildroot 软件包的 Python 软件包在 PyPI 上可用,您可能希望使用位于 utils/
的 scanpypi
工具来自动化该过程。
You can find the list of existing PyPI packages
here.
您可以在此处找到现有 PyPI 软件包的列表。
scanpypi
requires Python’s setuptools
package to be installed on
your host.
scanpypi
需要在您的主机上安装 Python 的 setuptools
包。
When at the root of your buildroot directory just do :
当在您的构建根目录时,只需执行:
utils/scanpypi foo bar -o package
This will generate packages python-foo
and python-bar
in the package
folder if they exist on https://pypi.python.org.
如果它们存在于 https://pypi.python.org 上,这将在包文件夹中生成 python-foo
和 python-bar
包。
Find the external python modules
menu and insert your package inside.
Keep in mind that the items inside a menu should be in alphabetical order.
找到 external python modules
菜单并将您的软件包插入其中。请记住,菜单中的项目应按字母顺序排列。
Please keep in mind that you’ll most likely have to manually check the
package for any mistakes as there are things that cannot be guessed by
the generator (e.g. dependencies on any of the python core modules
such as BR2_PACKAGE_PYTHON_ZLIB). Also, please take note that the
license and license files are guessed and must be checked. You also
need to manually add the package to the package/Config.in
file.
请
记住,您很可能需要手动检查软件包是否存在任何错误,因为有些内容生成器无法猜测(例如,对任何 Python 核心模块的依赖项,如
BR2_PACKAGE_PYTHON_ZLIB)。另外,请注意,许可证和许可证文件是猜测的,必须进行检查。您还需要手动将软件包添加到 package/Config.in
文件中。
If your Buildroot package is not in the official Buildroot tree but in
a br2-external tree, use the -o flag as follows:
如果您的 Buildroot 软件包不在官方 Buildroot 树中,而是在 br2-external 树中,请使用-o 标志,如下所示:
utils/scanpypi foo bar -o other_package_dir
This will generate packages python-foo
and python-bar
in the
other_package_directory
instead of package
.
这将在 other_package_directory
中生成 python-foo
和 python-bar
包,而不是 package
。
Option -h
will list the available options:
选项 -h
将列出可用选项:
utils/scanpypi -h
C Foreign Function Interface for Python (CFFI) provides a convenient
and reliable way to call compiled C code from Python using interface
declarations written in C. Python packages relying on this backend can
be identified by the appearance of a cffi
dependency in the
install_requires
field of their setup.py
file.
Python 的 C Foreign Function Interface(CFFI)提供了一种方便可靠的方式,使用在 C 中编写的接口声明从 Python 调用编译的 C 代码。依赖于这个后端的 Python 软件包可以通过在其 setup.py
文件的 install_requires
字段中出现 cffi
依赖来识别。
Such a package should:
这样的软件包应该:
python-cffi
as a runtime dependency in order to install the
compiled C library wrapper on the target. This is achieved by adding
select BR2_PACKAGE_PYTHON_CFFI
to the package Config.in
.
python-cffi
作为运行时依赖项,以便在目标上安装编译的 C 库包装器。这可以通过将 select BR2_PACKAGE_PYTHON_CFFI
添加到软件包 Config.in
中来实现。config BR2_PACKAGE_PYTHON_FOO bool "python-foo" select BR2_PACKAGE_PYTHON_CFFI # runtime
host-python-cffi
as a build-time dependency in order to
cross-compile the C wrapper. This is achieved by adding
host-python-cffi
to the PYTHON_FOO_DEPENDENCIES
variable.
host-python-cffi
添加为构建时依赖项。这可以通过将 host-python-cffi
添加到 PYTHON_FOO_DEPENDENCIES
变量来实现。################################################################################ # # python-foo # ################################################################################ ... PYTHON_FOO_DEPENDENCIES = host-python-cffi $(eval $(python-package))
First, let’s see how to write a .mk
file for a LuaRocks-based package,
with an example :
首先,让我们看看如何为基于 LuaRocks 的软件包编写一个 .mk
文件,示例如下:
01: ################################################################################ 02: # 03: # lua-foo 04: # 05: ################################################################################ 06: 07: LUA_FOO_VERSION = 1.0.2-1 08: LUA_FOO_NAME_UPSTREAM = foo 09: LUA_FOO_DEPENDENCIES = bar 10: 11: LUA_FOO_BUILD_OPTS += BAR_INCDIR=$(STAGING_DIR)/usr/include 12: LUA_FOO_BUILD_OPTS += BAR_LIBDIR=$(STAGING_DIR)/usr/lib 13: LUA_FOO_LICENSE = luaFoo license 14: LUA_FOO_LICENSE_FILES = $(LUA_FOO_SUBDIR)/COPYING 15: 16: $(eval $(luarocks-package))
On line 7, we declare the version of the package (the same as in the rockspec,
which is the concatenation of the upstream version and the rockspec revision,
separated by a hyphen -).
在第 7 行,我们声明软件包的版本(与 rockspec 中相同,即上游版本和 rockspec 修订版的连接,用连字符 - 分隔)。
On line 8, we declare that the package is called "foo" on LuaRocks. In
Buildroot, we give Lua-related packages a name that starts with "lua", so the
Buildroot name is different from the upstream name. LUA_FOO_NAME_UPSTREAM
makes the link between the two names.
在第 8 行,我们声明该软件包在 LuaRocks 上称为"foo"。在 Buildroot 中,我们给 Lua 相关的软件包命名以"lua"开头,因此 Buildroot 的名称与上游名称不同。 LUA_FOO_NAME_UPSTREAM
建立了这两个名称之间的联系。
On line 9, we declare our dependencies against native libraries, so that they
are built before the build process of our package starts.
在第 9 行,我们声明我们依赖于本地库,以便在我们的软件包构建过程开始之前构建它们。
On lines 11-12, we tell Buildroot to pass custom options to LuaRocks when it is
building the package.
在第 11-12 行,我们告诉 Buildroot 在构建软件包时向 LuaRocks 传递自定义选项。
On lines 13-14, we specify the licensing terms for the package.
在第 13-14 行,我们指定了软件包的许可条款。
Finally, on line 16, we invoke the luarocks-package
macro that generates all the Makefile rules that actually allows the
package to be built.
最后,在第 16 行,我们调用 luarocks-package
宏,生成所有实际允许构建软件包的 Makefile 规则。
Most of these details can be retrieved from the rock
and rockspec
.
So, this file and the Config.in file can be generated by running the
command luarocks buildroot foo lua-foo
in the Buildroot
directory. This command runs a specific Buildroot addon of luarocks
that will automatically generate a Buildroot package. The result must
still be manually inspected and possibly modified.
这些细节大多可以从 rock
和 rockspec
中检索。因此,可以通过在 Buildroot 目录中运行命令 luarocks buildroot foo lua-foo
来生成此文件和 Config.in 文件。此命令运行 luarocks
的特定 Buildroot 附加组件,将自动生成一个 Buildroot 软件包。结果仍须手动检查并可能进行修改。
package/Config.in
file has to be updated manually to include the
generated Config.in files.
package/Config.in
文件,以包含生成的 Config.in 文件。LuaRocks is a deployment and management system for Lua modules, and supports
various build.type
: builtin
, make
and cmake
. In the context of
Buildroot, the luarocks-package
infrastructure only supports the builtin
mode. LuaRocks packages that use the make
or cmake
build mechanisms
should instead be packaged using the generic-package
and cmake-package
infrastructures in Buildroot, respectively.
LuaRocks 是 Lua 模块的部署和管理系统,支持各种 build.type
: builtin
, make
和 cmake
。在 Buildroot 的上下文中, luarocks-package
基础设施仅支持 builtin
模式。应该使用 Buildroot 中的 generic-package
和 cmake-package
基础设施打包使用 make
或 cmake
构建机制的 LuaRocks 软件包。
The main macro of the LuaRocks package infrastructure is luarocks-package
:
like generic-package
it works by defining a number of variables providing
metadata information about the package, and then calling luarocks-package
.
LuaRocks 软件包基础设施的主要宏是 luarocks-package
:类似于 generic-package
,它通过定义一些变量来提供关于软件包的元数据信息,然后调用 luarocks-package
。
Just like the generic infrastructure, the LuaRocks infrastructure works
by defining a number of variables before calling the luarocks-package
macro.
就像通用基础设施一样,LuaRocks 基础设施通过在调用 luarocks-package
宏之前定义一些变量来工作。
First, all the package metadata information variables that exist in
the generic infrastructure also exist in the LuaRocks infrastructure:
LUA_FOO_VERSION
, LUA_FOO_SOURCE
, LUA_FOO_SITE
,
LUA_FOO_DEPENDENCIES
, LUA_FOO_LICENSE
, LUA_FOO_LICENSE_FILES
.
首先,所有在通用基础设施中存在的软件包元数据信息变量也存在于 LuaRocks 基础设施中: LUA_FOO_VERSION
, LUA_FOO_SOURCE
, LUA_FOO_SITE
, LUA_FOO_DEPENDENCIES
, LUA_FOO_LICENSE
, LUA_FOO_LICENSE_FILES
。
Two of them are populated by the LuaRocks infrastructure (for the
download
step). If your package is not hosted on the LuaRocks mirror
$(BR2_LUAROCKS_MIRROR)
, you can override them:
两者由 LuaRocks 基础设施填充(用于 download
步骤)。如果您的软件包未托管在 LuaRocks 镜像 $(BR2_LUAROCKS_MIRROR)
上,则可以覆盖它们:
LUA_FOO_SITE
, which defaults to $(BR2_LUAROCKS_MIRROR)
LUA_FOO_SITE
,默认为 $(BR2_LUAROCKS_MIRROR)
LUA_FOO_SOURCE
, which defaults to
$(lowercase LUA_FOO_NAME_UPSTREAM)-$(LUA_FOO_VERSION).src.rock
LUA_FOO_SOURCE
,默认为 $(lowercase LUA_FOO_NAME_UPSTREAM)-$(LUA_FOO_VERSION).src.rock
A few additional variables, specific to the LuaRocks infrastructure, are
also defined. They can be overridden in specific cases.
LuaRocks 基础设施中还定义了一些特定的附加变量。它们可以在特定情况下被覆盖。
LUA_FOO_NAME_UPSTREAM
, which defaults to lua-foo
, i.e. the Buildroot
package name
LUA_FOO_NAME_UPSTREAM
,默认为 lua-foo
,即 Buildroot 包名称LUA_FOO_ROCKSPEC
, which defaults to
$(lowercase LUA_FOO_NAME_UPSTREAM)-$(LUA_FOO_VERSION).rockspec
LUA_FOO_ROCKSPEC
,默认为 $(lowercase LUA_FOO_NAME_UPSTREAM)-$(LUA_FOO_VERSION).rockspec
LUA_FOO_SUBDIR
, which defaults to
$(LUA_FOO_NAME_UPSTREAM)-$(LUA_FOO_VERSION_WITHOUT_ROCKSPEC_REVISION)
LUA_FOO_SUBDIR
,默认为 $(LUA_FOO_NAME_UPSTREAM)-$(LUA_FOO_VERSION_WITHOUT_ROCKSPEC_REVISION)
LUA_FOO_BUILD_OPTS
contains additional build options for the
luarocks build
call.
LUA_FOO_BUILD_OPTS
包含 luarocks build
调用的额外构建选项。First, let’s see how to write a .mk
file for a Perl/CPAN package,
with an example :
首先,让我们看看如何为 Perl/CPAN 软件包编写一个 .mk
文件,附带示例:
01: ################################################################################ 02: # 03: # perl-foo-bar 04: # 05: ################################################################################ 06: 07: PERL_FOO_BAR_VERSION = 0.02 08: PERL_FOO_BAR_SOURCE = Foo-Bar-$(PERL_FOO_BAR_VERSION).tar.gz 09: PERL_FOO_BAR_SITE = $(BR2_CPAN_MIRROR)/authors/id/M/MO/MONGER 10: PERL_FOO_BAR_DEPENDENCIES = perl-strictures 11: PERL_FOO_BAR_LICENSE = Artistic or GPL-1.0+ 12: PERL_FOO_BAR_LICENSE_FILES = LICENSE 13: PERL_FOO_BAR_DISTNAME = Foo-Bar 14: 15: $(eval $(perl-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball and the location
of the tarball on a CPAN server. Buildroot will automatically download
the tarball from this location.
在第 8 和 9 行,我们声明 tarball 的名称和在 CPAN 服务器上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10, we declare our dependencies, so that they are built
before the build process of our package starts.
在第 10 行,我们声明我们的依赖关系,以便它们在我们的软件包构建过程开始之前构建。
On line 11 and 12, we give licensing details about the package (its
license on line 11, and the file containing the license text on line
12).
在第 11 行和第 12 行,我们提供有关软件包的许可详细信息(第 11 行是许可证,第 12 行是包含许可证文本的文件)。
On line 13, the name of the distribution as needed by the script
utils/scancpan
(in order to regenerate/upgrade these package files).
在第 13 行,脚本所需的分发名称为 utils/scancpan
(以重新生成/升级这些软件包文件)。
Finally, on line 15, we invoke the perl-package
macro that
generates all the Makefile rules that actually allow the package to be
built.
最后,在第 15 行,我们调用生成实际允许构建软件包的所有 Makefile 规则的 perl-package
宏。
Most of these data can be retrieved from https://metacpan.org/.
So, this file and the Config.in can be generated by running
the script utils/scancpan Foo-Bar
in the Buildroot directory
(or in a br2-external tree).
This script creates a Config.in file and foo-bar.mk file for the
requested package, and also recursively for all dependencies specified by
CPAN. You should still manually edit the result. In particular, the
following things should be checked.
这些数据大多可以从 https://metacpan.org/检索到。因此,可以通过在 Buildroot 目录(或 br2-external 树中)运行脚本 utils/scancpan Foo-Bar
来生成此文件和 Config.in 文件。此脚本为请求的软件包创建一个 Config.in 文件和 foo-bar.mk 文件,并递归为 CPAN 指定的所有依赖项创建。您仍应手动编辑结果。特别是,应检查以下内容。
PERL_FOO_BAR_DEPENDENCIES
.
PERL_FOO_BAR_DEPENDENCIES
中。package/Config.in
file has to be updated manually to include the
generated Config.in files. As a hint, the scancpan
script prints out
the required source "…"
statements, sorted alphabetically.
package/Config.in
文件,以包含生成的 Config.in 文件。提示: scancpan
脚本会按字母顺序打印所需的 source "…"
语句。As a policy, packages that provide Perl/CPAN modules should all be
named perl-<something>
in Buildroot.
作为政策,提供 Perl/CPAN 模块的软件包应全部在 Buildroot 中命名为 perl-<something>
。
This infrastructure handles various Perl build systems :
ExtUtils-MakeMaker
(EUMM), Module-Build
(MB) and Module-Build-Tiny
.
Build.PL
is preferred by default when a package provides a Makefile.PL
and a Build.PL
.
该基础设施处理各种 Perl 构建系统: ExtUtils-MakeMaker
(EUMM)、 Module-Build
(MB)和 Module-Build-Tiny
。当一个软件包提供 Makefile.PL
和 Build.PL
时,默认情况下首选 Build.PL
。
The main macro of the Perl/CPAN package infrastructure is
perl-package
. It is similar to the generic-package
macro. The ability to
have target and host packages is also available, with the
host-perl-package
macro.
Perl/CPAN 软件包基础设施的主要宏是 perl-package
。它类似于 generic-package
宏。还可以使用目标和主机软件包,使用 host-perl-package
宏。
Just like the generic infrastructure, the Perl/CPAN infrastructure
works by defining a number of variables before calling the
perl-package
macro.
就像通用基础设施一样,Perl/CPAN 基础设施通过在调用 perl-package
宏之前定义多个变量来工作。
First, all the package metadata information variables that exist in the
generic infrastructure also exist in the Perl/CPAN infrastructure:
PERL_FOO_VERSION
, PERL_FOO_SOURCE
,
PERL_FOO_PATCH
, PERL_FOO_SITE
,
PERL_FOO_SUBDIR
, PERL_FOO_DEPENDENCIES
,
PERL_FOO_INSTALL_TARGET
.
首先,在通用基础设施中存在的所有软件包元数据信息变量也存在于 Perl/CPAN 基础设施中: PERL_FOO_VERSION
, PERL_FOO_SOURCE
, PERL_FOO_PATCH
, PERL_FOO_SITE
, PERL_FOO_SUBDIR
, PERL_FOO_DEPENDENCIES
, PERL_FOO_INSTALL_TARGET
。
Note that setting PERL_FOO_INSTALL_STAGING
to YES
has no effect
unless a PERL_FOO_INSTALL_STAGING_CMDS
variable is defined. The perl
infrastructure doesn’t define these commands since Perl modules generally
don’t need to be installed to the staging
directory.
请注意,将 PERL_FOO_INSTALL_STAGING
设置为 YES
,除非定义了 PERL_FOO_INSTALL_STAGING_CMDS
变量,否则不会产生任何效果。Perl 基础设施不定义这些命令,因为 Perl 模块通常不需要安装到 staging
目录。
A few additional variables, specific to the Perl/CPAN infrastructure,
can also be defined. Many of them are only useful in very specific
cases, typical packages will therefore only use a few of them.
还可以定义一些特定于 Perl/CPAN 基础设施的附加变量。其中许多只在非常特定的情况下有用,因此典型软件包通常只使用其中的一部分。
PERL_FOO_PREFER_INSTALLER
/HOST_PERL_FOO_PREFER_INSTALLER
,
specifies the preferred installation method. Possible values are
EUMM
(for Makefile.PL
based installation using
ExtUtils-MakeMaker
) and MB
(for Build.PL
based installation
using Module-Build
). This variable is only used when the package
provides both installation methods.
PERL_FOO_PREFER_INSTALLER
/ HOST_PERL_FOO_PREFER_INSTALLER
,指定首选安装方法。可能的值为 EUMM
(用于基于 ExtUtils-MakeMaker
的安装,使用 ExtUtils-MakeMaker
)和 MB
(用于基于 Build.PL
的安装,使用 Module-Build
)。仅当软件包提供两种安装方法时才使用此变量。PERL_FOO_CONF_ENV
/HOST_PERL_FOO_CONF_ENV
, to specify additional
environment variables to pass to the perl Makefile.PL
or perl Build.PL
.
By default, empty.
PERL_FOO_CONF_ENV
/ HOST_PERL_FOO_CONF_ENV
,用于指定要传递给 perl Makefile.PL
或 perl Build.PL
的附加环境变量。默认为空。PERL_FOO_CONF_OPTS
/HOST_PERL_FOO_CONF_OPTS
, to specify additional
configure options to pass to the perl Makefile.PL
or perl Build.PL
.
By default, empty.
PERL_FOO_CONF_OPTS
/ HOST_PERL_FOO_CONF_OPTS
,用于指定要传递给 perl Makefile.PL
或 perl Build.PL
的附加配置选项。默认为空。PERL_FOO_BUILD_OPTS
/HOST_PERL_FOO_BUILD_OPTS
, to specify additional
options to pass to make pure_all
or perl Build build
in the build step.
By default, empty.
PERL_FOO_BUILD_OPTS
/ HOST_PERL_FOO_BUILD_OPTS
,用于在构建步骤中传递给 make pure_all
或 perl Build build
的其他选项。默认为空。PERL_FOO_INSTALL_TARGET_OPTS
, to specify additional options to
pass to make pure_install
or perl Build install
in the install step.
By default, empty.
PERL_FOO_INSTALL_TARGET_OPTS
,用于在安装步骤中传递给 make pure_install
或 perl Build install
的其他选项。默认为空。HOST_PERL_FOO_INSTALL_OPTS
, to specify additional options to
pass to make pure_install
or perl Build install
in the install step.
By default, empty.
HOST_PERL_FOO_INSTALL_OPTS
,用于在安装步骤中传递给 make pure_install
或 perl Build install
的其他选项。默认为空。In Buildroot, a virtual package is a package whose functionalities are
provided by one or more packages, referred to as providers. The virtual
package management is an extensible mechanism allowing the user to choose
the provider used in the rootfs.
在 Buildroot 中,虚拟包是由一个或多个包提供功能的包,称为提供者。虚拟包管理是一种可扩展的机制,允许用户选择在 rootfs 中使用的提供者。
For example, OpenGL ES is an API for 2D and 3D graphics on embedded systems.
The implementation of this API is different for the Allwinner Tech Sunxi and
the Texas Instruments OMAP35xx platforms. So libgles
will be a virtual
package and sunxi-mali-utgard
and ti-gfx
will be the providers.
例如,OpenGL ES 是用于嵌入式系统上的 2D 和 3D 图形的 API。该 API 的实现对于 Allwinner Tech Sunxi 和 Texas Instruments OMAP35xx 平台是不同的。因此, libgles
将是一个虚拟包, sunxi-mali-utgard
和 ti-gfx
将是提供者。
In the following example, we will explain how to add a new virtual package
(something-virtual) and a provider for it (some-provider).
在以下示例中,我们将解释如何添加一个新的虚拟包(something-virtual)以及为其提供者(some-provider)。
First, let’s create the virtual package.
首先,让我们创建虚拟包。
The Config.in
file of virtual package something-virtual should contain:
虚拟包 something-virtual 的 Config.in
文件应包含:
01: config BR2_PACKAGE_HAS_SOMETHING_VIRTUAL 02: bool 03: 04: config BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL 05: depends on BR2_PACKAGE_HAS_SOMETHING_VIRTUAL 06: string
In this file, we declare two options, BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
and
BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL
, whose values will be used by the
providers.
在此文件中,我们声明两个选项, BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
和 BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL
,它们的值将由提供者使用。
The .mk
for the virtual package should just evaluate the virtual-package
macro:
虚拟包的 .mk
应该只评估 virtual-package
宏:
01: ################################################################################ 02: # 03: # something-virtual 04: # 05: ################################################################################ 06: 07: $(eval $(virtual-package))
The ability to have target and host packages is also available, with the
host-virtual-package
macro.
也可以使用目标和主机包,使用 host-virtual-package
宏。
When adding a package as a provider, only the Config.in
file requires some
modifications.
当将一个软件包添加为供应商时,只有 Config.in
文件需要进行一些修改。
The Config.in
file of the package some-provider, which provides the
functionalities of something-virtual, should contain:
软件包 some-provider 的 Config.in
文件,该软件包提供了 something-virtual 的功能,应包含:
01: config BR2_PACKAGE_SOME_PROVIDER 02: bool "some-provider" 03: select BR2_PACKAGE_HAS_SOMETHING_VIRTUAL 04: help 05: This is a comment that explains what some-provider is. 06: 07: http://foosoftware.org/some-provider/ 08: 09: if BR2_PACKAGE_SOME_PROVIDER 10: config BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL 11: default "some-provider" 12: endif
On line 3, we select BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
, and on line 11, we
set the value of BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL
to the name of the
provider, but only if it is selected.
在第 3 行,我们选择 BR2_PACKAGE_HAS_SOMETHING_VIRTUAL
,在第 11 行,如果已选择,则将 BR2_PACKAGE_PROVIDES_SOMETHING_VIRTUAL
的值设置为提供者的名称。
The .mk
file should also declare an additional variable
SOME_PROVIDER_PROVIDES
to contain the names of all the virtual
packages it is an implementation of:
.mk
文件还应声明一个额外的变量 SOME_PROVIDER_PROVIDES
,以包含其实现的所有虚拟包的名称:
01: SOME_PROVIDER_PROVIDES = something-virtual
Of course, do not forget to add the proper build and runtime dependencies for
this package!
当然,不要忘记为此软件包添加适当的构建和运行时依赖项!
When adding a package that requires a certain FEATURE
provided by a virtual
package, you have to use depends on BR2_PACKAGE_HAS_FEATURE
, like so:
当添加一个需要虚拟包提供的特定 FEATURE
的软件包时,您必须使用 depends on BR2_PACKAGE_HAS_FEATURE
,如下所示:
config BR2_PACKAGE_HAS_FEATURE bool config BR2_PACKAGE_FOO bool "foo" depends on BR2_PACKAGE_HAS_FEATURE
If your package really requires a specific provider, then you’ll have to
make your package depends on
this provider; you can not select
a
provider.
如果您的软件包确实需要特定的提供者,那么您将不得不使您的软件包 depends on
这个提供者;您不能 select
一个提供者。
Let’s take an example with two providers for a FEATURE
:
让我们以一个 FEATURE
有两个提供者的示例来说明:
config BR2_PACKAGE_HAS_FEATURE bool config BR2_PACKAGE_FOO bool "foo" select BR2_PACKAGE_HAS_FEATURE config BR2_PACKAGE_BAR bool "bar" select BR2_PACKAGE_HAS_FEATURE
And you are adding a package that needs FEATURE
as provided by foo
,
but not as provided by bar
.
而您正在添加一个需要 FEATURE
的软件包,该软件包由 foo
提供,而不是由 bar
提供。
If you were to use select BR2_PACKAGE_FOO
, then the user would still
be able to select BR2_PACKAGE_BAR
in the menuconfig. This would create
a configuration inconsistency, whereby two providers of the same FEATURE
would be enabled at once, one explicitly set by the user, the other
implicitly by your select
.
如果您使用 select BR2_PACKAGE_FOO
,那么用户仍然可以在 menuconfig 中选择 BR2_PACKAGE_BAR
。这将创建配置不一致,即同时启用两个相同 FEATURE
的提供者,一个由用户明确设置,另一个由您的 select
隐式设置。
Instead, you have to use depends on BR2_PACKAGE_FOO
, which avoids any
implicit configuration inconsistency.
相反,您必须使用 depends on BR2_PACKAGE_FOO
,这样可以避免任何隐式配置不一致。
A popular way for a software package to handle user-specified
configuration is kconfig
. Among others, it is used by the Linux
kernel, Busybox, and Buildroot itself. The presence of a .config file
and a menuconfig
target are two well-known symptoms of kconfig being
used.
软件包处理用户指定配置的一种流行方式是 kconfig
。在其他情况下,它被 Linux 内核,Busybox 和 Buildroot 本身使用。.config 文件的存在和 menuconfig
目标是使用 kconfig 的两个众所周知的症状。
Buildroot features an infrastructure for packages that use kconfig for
their configuration. This infrastructure provides the necessary logic to
expose the package’s menuconfig
target as foo-menuconfig
in
Buildroot, and to handle the copying back and forth of the configuration
file in a correct way.
Buildroot 具有用于使用 kconfig 进行配置的软件包的基础设施。该基础设施提供了将软件包的 menuconfig
目标在 Buildroot 中公开为 foo-menuconfig
,并以正确方式处理配置文件的复制的必要逻辑。
The kconfig-package
infrastructure is based on the generic-package
infrastructure. All variables supported by generic-package
are
available in kconfig-package
as well. See
Section 18.6.2, “generic-package
reference” for more details.
kconfig-package
基础设施是基于 generic-package
基础设施的。 generic-package
支持的所有变量在 kconfig-package
中也都可用。有关更多详细信息,请参阅第 18.6.2 节“ generic-package
参考”。
In order to use the kconfig-package
infrastructure for a Buildroot
package, the minimally required lines in the .mk
file, in addition to
the variables required by the generic-package
infrastructure, are:
为了使用 kconfig-package
基础设施构建 Buildroot 软件包,除了 generic-package
基础设施需要的变量外,在 .mk
文件中最少需要的行是:
FOO_KCONFIG_FILE = reference-to-source-configuration-file $(eval $(kconfig-package))
This snippet creates the following make targets:
此代码片段创建以下 make 目标:
foo-menuconfig
, which calls the package’s menuconfig
target
foo-menuconfig
,调用软件包的 menuconfig
目标foo-update-config
, which copies the configuration back to the
source configuration file. It is not possible to use this target
when fragment files are set.
foo-update-config
,将配置复制回源配置文件。在设置片段文件时,无法使用此目标。foo-update-defconfig
, which copies the configuration back to the
source configuration file. The configuration file will only list the
options that differ from the default values. It is not possible to
use this target when fragment files are set.
foo-update-defconfig
,将配置复制回源配置文件。配置文件仅列出与默认值不同的选项。在设置片段文件时,无法使用此目标。foo-diff-config
, which outputs the differences between the current
configuration and the one defined in the Buildroot configuration for
this kconfig package. The output is useful to identify the
configuration changes that may have to be propagated to
configuration fragments for example.
foo-diff-config
,输出当前配置与为此 kconfig 软件包的 Buildroot 配置定义的配置之间的差异。输出有助于识别可能需要传播到配置片段的配置更改。and ensures that the source configuration file is copied to the build
directory at the right moment.
并确保源配置文件在正确的时刻复制到构建目录。
There are two options to specify a configuration file to use, either
FOO_KCONFIG_FILE
(as in the example, above) or FOO_KCONFIG_DEFCONFIG
.
It is mandatory to provide either, but not both:
有两种选项可以指定要使用的配置文件,即 FOO_KCONFIG_FILE
(如上例所示)或 FOO_KCONFIG_DEFCONFIG
。必须提供其中之一,但不能同时提供两者:
FOO_KCONFIG_FILE
specifies the path to a defconfig or full-config file
to be used to configure the package.
FOO_KCONFIG_FILE
指定要用于配置软件包的 defconfig 或 full-config 文件的路径。FOO_KCONFIG_DEFCONFIG
specifies the defconfig make rule to call to
configure the package.
FOO_KCONFIG_DEFCONFIG
指定要调用以配置软件包的 defconfig make 规则。In addition to these minimally required lines, several optional variables can
be set to suit the needs of the package under consideration:
除了这些最低要求的行之外,还可以设置几个可选变量以满足所考虑软件包的需求:
FOO_KCONFIG_EDITORS
: a space-separated list of kconfig editors to
support, for example menuconfig xconfig. By default, menuconfig.
FOO_KCONFIG_EDITORS
:支持的 kconfig 编辑器的空格分隔列表,例如 menuconfig xconfig。默认为 menuconfig。FOO_KCONFIG_FRAGMENT_FILES
: a space-separated list of configuration
fragment files that are merged to the main configuration file.
Fragment files are typically used when there is a desire to stay in sync
with an upstream (def)config file, with some minor modifications.
FOO_KCONFIG_FRAGMENT_FILES
:一组以空格分隔的配置片段文件列表,这些文件将合并到主配置文件中。当希望与上游(def)配置文件保持同步并进行一些微小修改时,通常会使用片段文件。FOO_KCONFIG_OPTS
: extra options to pass when calling the kconfig
editors. This may need to include $(FOO_MAKE_OPTS), for example. By
default, empty.
FOO_KCONFIG_OPTS
:调用 kconfig 编辑器时传递的额外选项。例如,这可能需要包括$(FOO_MAKE_OPTS)。默认为空。FOO_KCONFIG_FIXUP_CMDS
: a list of shell commands needed to fixup the
configuration file after copying it or running a kconfig editor. Such
commands may be needed to ensure a configuration consistent with other
configuration of Buildroot, for example. By default, empty.
FOO_KCONFIG_FIXUP_CMDS
:在复制配置文件或运行 kconfig 编辑器后需要修复配置文件的一组 shell 命令列表。这些命令可能需要确保与 Buildroot 的其他配置一致的配置。默认为空。FOO_KCONFIG_DOTCONFIG
: path (with filename) of the .config
file,
relative to the package source tree. The default, .config
, should
be well suited for all packages that use the standard kconfig
infrastructure as inherited from the Linux kernel; some packages use
a derivative of kconfig that use a different location.
FOO_KCONFIG_DOTCONFIG
: .config
文件的路径(包括文件名),相对于软件包源树。默认情况下, .config
对于所有使用从 Linux 内核继承的标准 kconfig 基础设施的软件包非常合适;一些软件包使用 kconfig 的衍生版本,其位置不同。FOO_KCONFIG_DEPENDENCIES
: the list of packages (most probably, host
packages) that need to be built before this package’s kconfig is
interpreted. Seldom used. By default, empty.
FOO_KCONFIG_DEPENDENCIES
:需要在解释此软件包的 kconfig 之前构建的软件包列表(很可能是主机软件包)。很少使用。默认为空。FOO_KCONFIG_SUPPORTS_DEFCONFIG
: whether the package’s kconfig system
supports using defconfig files; few packages do not. By default, YES.
FOO_KCONFIG_SUPPORTS_DEFCONFIG
:软件包的 kconfig 系统是否支持使用 defconfig 文件;很少有软件包不支持。默认为 YES。First, let’s see how to write a .mk
file for a rebar-based package,
with an example :
首先,让我们看看如何为基于钢筋的软件包编写 .mk
文件,附带一个示例:
01: ################################################################################ 02: # 03: # erlang-foobar 04: # 05: ################################################################################ 06: 07: ERLANG_FOOBAR_VERSION = 1.0 08: ERLANG_FOOBAR_SOURCE = erlang-foobar-$(ERLANG_FOOBAR_VERSION).tar.xz 09: ERLANG_FOOBAR_SITE = http://www.foosoftware.org/download 10: ERLANG_FOOBAR_DEPENDENCIES = host-libaaa libbbb 11: 12: $(eval $(rebar-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball (xz-ed tarball
recommended) and the location of the tarball on the Web. Buildroot
will automatically download the tarball from this location.
在第 8 和 9 行,我们声明了 tarball 的名称(建议使用 xz-ed tarball)和 tarball 在 Web 上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10, we declare our dependencies, so that they are built
before the build process of our package starts.
在第 10 行,我们声明我们的依赖关系,以便它们在我们的软件包构建过程开始之前构建。
Finally, on line 12, we invoke the rebar-package
macro that
generates all the Makefile rules that actually allows the package to
be built.
最后,在第 12 行,我们调用 rebar-package
宏,生成所有实际允许构建软件包的 Makefile 规则。
The main macro of the rebar
package infrastructure is
rebar-package
. It is similar to the generic-package
macro. The
ability to have host packages is also available, with the
host-rebar-package
macro.
rebar
包基础设施的主要宏是 rebar-package
。它类似于 generic-package
宏。还可以使用主机包,使用 host-rebar-package
宏。
Just like the generic infrastructure, the rebar
infrastructure works
by defining a number of variables before calling the rebar-package
macro.
就像通用基础设施一样, rebar
基础设施通过在调用 rebar-package
宏之前定义多个变量来工作。
First, all the package metadata information variables that exist in
the generic infrastructure also exist in the rebar
infrastructure:
ERLANG_FOOBAR_VERSION
, ERLANG_FOOBAR_SOURCE
,
ERLANG_FOOBAR_PATCH
, ERLANG_FOOBAR_SITE
,
ERLANG_FOOBAR_SUBDIR
, ERLANG_FOOBAR_DEPENDENCIES
,
ERLANG_FOOBAR_INSTALL_STAGING
, ERLANG_FOOBAR_INSTALL_TARGET
,
ERLANG_FOOBAR_LICENSE
and ERLANG_FOOBAR_LICENSE_FILES
.
首先,在通用基础设施中存在的所有软件包元数据信息变量也存在于 rebar
基础设施中: ERLANG_FOOBAR_VERSION
, ERLANG_FOOBAR_SOURCE
, ERLANG_FOOBAR_PATCH
, ERLANG_FOOBAR_SITE
, ERLANG_FOOBAR_SUBDIR
, ERLANG_FOOBAR_DEPENDENCIES
, ERLANG_FOOBAR_INSTALL_STAGING
, ERLANG_FOOBAR_INSTALL_TARGET
, ERLANG_FOOBAR_LICENSE
和 ERLANG_FOOBAR_LICENSE_FILES
。
A few additional variables, specific to the rebar
infrastructure,
can also be defined. Many of them are only useful in very specific
cases, typical packages will therefore only use a few of them.
还可以定义一些特定于 rebar
基础设施的附加变量。其中许多只在非常特定的情况下有用,典型的软件包因此只会使用其中的一部分。
ERLANG_FOOBAR_USE_AUTOCONF
, to specify that the package uses
autoconf at the configuration step. When a package sets this
variable to YES
, the autotools
infrastructure is used.
ERLANG_FOOBAR_USE_AUTOCONF
,用于指定软件包在配置步骤中使用 autoconf。当软件包将此变量设置为 YES
时,将使用 autotools
基础设施。
Note. You can also use some of the variables from the autotools
infrastructure: ERLANG_FOOBAR_CONF_ENV
, ERLANG_FOOBAR_CONF_OPTS
,
ERLANG_FOOBAR_AUTORECONF
, ERLANG_FOOBAR_AUTORECONF_ENV
and
ERLANG_FOOBAR_AUTORECONF_OPTS
.
注意。您还可以使用 autotools
基础设施中的一些变量: ERLANG_FOOBAR_CONF_ENV
, ERLANG_FOOBAR_CONF_OPTS
, ERLANG_FOOBAR_AUTORECONF
, ERLANG_FOOBAR_AUTORECONF_ENV
和 ERLANG_FOOBAR_AUTORECONF_OPTS
。
ERLANG_FOOBAR_USE_BUNDLED_REBAR
, to specify that the package has
a bundled version of rebar and that it shall be used. Valid
values are YES
or NO
(the default).
ERLANG_FOOBAR_USE_BUNDLED_REBAR
,指定软件包具有 rebar 的捆绑版本,并将其用于。有效值为 YES
或 NO
(默认值)。
Note. If the package bundles a rebar utility, but can use the generic
one that Buildroot provides, just say NO
(i.e., do not specify
this variable). Only set if it is mandatory to use the rebar
utility bundled in this package.
注意。如果软件包捆绑了 rebar 实用程序,但可以使用 Buildroot 提供的通用实用程序,只需说 NO
(即,不指定此变量)。仅在必须使用此软件包中捆绑的 rebar 实用程序时设置。
ERLANG_FOOBAR_REBAR_ENV
, to specify additional environment
variables to pass to the rebar utility.
ERLANG_FOOBAR_REBAR_ENV
,用于指定传递给 rebar 实用程序的额外环境变量。ERLANG_FOOBAR_KEEP_DEPENDENCIES
, to keep the dependencies
described in the rebar.config file. Valid values are YES
or NO
(the default). Unless this variable is set to YES
, the rebar
infrastructure removes such dependencies in a post-patch hook to
ensure rebar does not download nor compile them.
ERLANG_FOOBAR_KEEP_DEPENDENCIES
,用于保留 rebar.config 文件中描述的依赖项。有效值为 YES
或 NO
(默认值)。除非将此变量设置为 YES
,否则 rebar 基础结构会在 post-patch 钩子中删除这些依赖项,以确保 rebar 不会下载也不会编译它们。With the rebar infrastructure, all the steps required to build
and install the packages are already defined, and they generally work
well for most rebar-based packages. However, when required, it is
still possible to customize what is done in any particular step:
通过 rebar 基础结构,构建和安装软件包所需的所有步骤已经定义,并且它们通常适用于大多数基于 rebar 的软件包。但是,如果需要,仍然可以自定义在任何特定步骤中执行的操作:
.mk
file defines its
own ERLANG_FOOBAR_BUILD_CMDS
variable, it will be used instead
of the default rebar one. However, using this method should be
restricted to very specific cases. Do not use it in the general
case.
.mk
文件定义了自己的 ERLANG_FOOBAR_BUILD_CMDS
变量,它将被用来代替默认的钢筋。然而,应该将使用这种方法限制在非常特定的情况下。不要在一般情况下使用它。First, let’s see how to write a .mk
file for a Waf-based package, with
an example :
首先,让我们看看如何为基于 Waf 的软件包编写一个 .mk
文件,附带一个示例:
01: ################################################################################ 02: # 03: # libfoo 04: # 05: ################################################################################ 06: 07: LIBFOO_VERSION = 1.0 08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz 09: LIBFOO_SITE = http://www.foosoftware.org/download 10: LIBFOO_CONF_OPTS = --enable-bar --disable-baz 11: LIBFOO_DEPENDENCIES = bar 12: 13: $(eval $(waf-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball (xz-ed tarball
recommended) and the location of the tarball on the Web. Buildroot
will automatically download the tarball from this location.
在第 8 和 9 行,我们声明了 tarball 的名称(建议使用 xz-ed tarball)和 tarball 在 Web 上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10, we tell Buildroot what options to enable for libfoo.
在第 10 行,我们告诉 Buildroot 要为 libfoo 启用哪些选项。
On line 11, we tell Buildroot the dependencies of libfoo.
在第 11 行,我们告诉 Buildroot libfoo 的依赖关系。
Finally, on line line 13, we invoke the waf-package
macro that generates all the Makefile rules that actually allows the
package to be built.
最后,在第 13 行,我们调用 waf-package
宏,生成所有实际允许构建软件包的 Makefile 规则。
The main macro of the Waf package infrastructure is waf-package
.
It is similar to the generic-package
macro.
Waf 软件包基础设施的主要宏是 waf-package
。它类似于 generic-package
宏。
Just like the generic infrastructure, the Waf infrastructure works
by defining a number of variables before calling the waf-package
macro.
就像通用基础设施一样,Waf 基础设施通过在调用 waf-package
宏之前定义多个变量来工作。
First, all the package metadata information variables that exist in
the generic infrastructure also exist in the Waf infrastructure:
LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
,
LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
,
LIBFOO_INSTALL_TARGET
.
首先,所有存在于通用基础设施中的软件包元数据信息变量也存在于 Waf 基础设施中: LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
, LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
, LIBFOO_INSTALL_TARGET
。
An additional variable, specific to the Waf infrastructure, can
also be defined.
可以定义一个特定于 Waf 基础设施的附加变量。
LIBFOO_SUBDIR
may contain the name of a subdirectory inside the
package that contains the main wscript file. This is useful,
if for example, the main wscript file is not at the root of
the tree extracted by the tarball. If HOST_LIBFOO_SUBDIR
is not
specified, it defaults to LIBFOO_SUBDIR
.
LIBFOO_SUBDIR
可能包含包内包含主 wscript 文件的子目录的名称。例如,如果主 wscript 文件不在 tarball 提取的树的根目录下,则这很有用。如果未指定 HOST_LIBFOO_SUBDIR
,则默认为 LIBFOO_SUBDIR
。LIBFOO_NEEDS_EXTERNAL_WAF
can be set to YES
or NO
to tell
Buildroot to use the bundled waf
executable. If set to NO
, the
default, then Buildroot will use the waf executable provided in the
package source tree; if set to YES
, then Buildroot will download,
install waf as a host tool and use it to build the package.
LIBFOO_NEEDS_EXTERNAL_WAF
可设置为 YES
或 NO
,以告诉 Buildroot 使用捆绑的 waf
可执行文件。如果设置为 NO
,则默认情况下,Buildroot 将使用包源树中提供的 waf 可执行文件;如果设置为 YES
,则 Buildroot 将下载、安装 waf 作为主机工具,并使用它构建包。LIBFOO_WAF_OPTS
, to specify additional options to pass to the
waf
script at every step of the package build process: configure,
build and installation. By default, empty.
LIBFOO_WAF_OPTS
,用于在软件包构建过程的每个步骤(配置、构建和安装)中传递给 waf
脚本的额外选项。默认为空。LIBFOO_CONF_OPTS
, to specify additional options to pass to the
waf
script for the configuration step. By default, empty.
LIBFOO_CONF_OPTS
,用于在配置步骤中传递给 waf
脚本的额外选项。默认为空。LIBFOO_BUILD_OPTS
, to specify additional options to pass to the
waf
script during the build step. By default, empty.
LIBFOO_BUILD_OPTS
,用于在构建步骤中传递给 waf
脚本的额外选项。默认为空。LIBFOO_INSTALL_STAGING_OPTS
, to specify additional options to pass
to the waf
script during the staging installation step. By default,
empty.
LIBFOO_INSTALL_STAGING_OPTS
,在分阶段安装过程中传递给 waf
脚本的附加选项。默认为空。LIBFOO_INSTALL_TARGET_OPTS
, to specify additional options to pass
to the waf
script during the target installation step. By default,
empty.
LIBFOO_INSTALL_TARGET_OPTS
,在目标安装步骤中传递给 waf
脚本的附加选项。默认为空。Meson is an open source build system meant to be both
extremely fast, and, even more importantly, as user friendly as possible. It
uses Ninja as a companion tool to perform the actual
build operations.
Meson 是一个开源构建系统,旨在既快速又尽可能用户友好。它使用 Ninja 作为辅助工具来执行实际的构建操作。
Let’s see how to write a .mk
file for a Meson-based package, with an example:
让我们看看如何为基于 Meson 的软件包编写 .mk
文件,附带一个示例:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: FOO_VERSION = 1.0 08: FOO_SOURCE = foo-$(FOO_VERSION).tar.gz 09: FOO_SITE = http://www.foosoftware.org/download 10: FOO_LICENSE = GPL-3.0+ 11: FOO_LICENSE_FILES = COPYING 12: FOO_INSTALL_STAGING = YES 13: 14: FOO_DEPENDENCIES = host-pkgconf bar 15: 16: ifeq ($(BR2_PACKAGE_BAZ),y) 17: FOO_CONF_OPTS += -Dbaz=true 18: FOO_DEPENDENCIES += baz 19: else 20: FOO_CONF_OPTS += -Dbaz=false 21: endif 22: 23: $(eval $(meson-package))
The Makefile starts with the definition of the standard variables for package
declaration (lines 7 to 11).
Makefile 以标准变量的定义开始,用于包声明(第 7 至 11 行)。
On line line 23, we invoke the meson-package
macro that generates all the
Makefile rules that actually allows the package to be built.
在第 23 行,我们调用生成所有 Makefile 规则的 meson-package
宏,实际上允许构建软件包。
In the example, host-pkgconf
and bar
are declared as dependencies in
FOO_DEPENDENCIES
at line 14 because the Meson build file of foo
uses
pkg-config
to determine the compilation flags and libraries of package bar
.
在示例中, host-pkgconf
和 bar
被声明为 foo
的 Meson 构建文件中的依赖项,因为 foo
的 Meson 构建文件使用 pkg-config
来确定软件包 bar
的编译标志和库。
Note that it is not necessary to add host-meson
in the FOO_DEPENDENCIES
variable of a package, since this basic dependency is automatically added as
needed by the Meson package infrastructure.
请注意,在软件包的 FOO_DEPENDENCIES
变量中不需要添加 host-meson
,因为这个基本依赖项会根据 Meson 软件包基础设施的需要自动添加。
If the "baz" package is selected, then support for the "baz" feature in "foo" is
activated by adding -Dbaz=true
to FOO_CONF_OPTS
at line 17, as specified in
the meson_options.txt
file in "foo" source tree. The "baz" package is also
added to FOO_DEPENDENCIES
. Note that the support for baz
is explicitly
disabled at line 20, if the package is not selected.
如果选择了“baz”包,则通过在第 17 行将 -Dbaz=true
添加到 FOO_CONF_OPTS
中来激活“foo”中“baz”功能,如“foo”源树中的 meson_options.txt
文件中所指定的那样。“baz”包也被添加到 FOO_DEPENDENCIES
中。请注意,如果未选择该包,则在第 20 行明确禁用对 baz
的支持。
To sum it up, to add a new meson-based package, the Makefile example can be
copied verbatim then edited to replace all occurences of FOO
with the
uppercase name of the new package and update the values of the standard
variables.
总而言之,要添加一个基于 meson 的新包,可以直接复制 Makefile 示例,然后编辑以将所有 FOO
的出现替换为新包的大写名称,并更新标准变量的值。
The main macro of the Meson package infrastructure is meson-package
. It is
similar to the generic-package
macro. The ability to have target and host
packages is also available, with the host-meson-package
macro.
Meson 软件包基础设施的主要宏是 meson-package
。它类似于 generic-package
宏。还可以使用 host-meson-package
宏来实现目标和主机软件包的功能。
Just like the generic infrastructure, the Meson infrastructure works by defining
a number of variables before calling the meson-package
macro.
就像通用基础设施一样,Meson 基础设施通过在调用 meson-package
宏之前定义多个变量来工作。
First, all the package metadata information variables that exist in the generic
infrastructure also exist in the Meson infrastructure: FOO_VERSION
,
FOO_SOURCE
, FOO_PATCH
, FOO_SITE
, FOO_SUBDIR
, FOO_DEPENDENCIES
,
FOO_INSTALL_STAGING
, FOO_INSTALL_TARGET
.
首先,所有在通用基础设施中存在的软件包元数据信息变量在 Meson 基础设施中也存在: FOO_VERSION
, FOO_SOURCE
, FOO_PATCH
, FOO_SITE
, FOO_SUBDIR
, FOO_DEPENDENCIES
, FOO_INSTALL_STAGING
, FOO_INSTALL_TARGET
。
A few additional variables, specific to the Meson infrastructure, can also be
defined. Many of them are only useful in very specific cases, typical packages
will therefore only use a few of them.
一些额外的变量,特定于 Meson 基础设施,也可以被定义。其中许多只在非常特定的情况下有用,典型的软件包因此只会使用其中的一部分。
FOO_SUBDIR
may contain the name of a subdirectory inside the
package that contains the main meson.build file. This is useful,
if for example, the main meson.build file is not at the root of
the tree extracted by the tarball. If HOST_FOO_SUBDIR
is not
specified, it defaults to FOO_SUBDIR
.
FOO_SUBDIR
可能包含包内包含主 meson.build 文件的子目录的名称。例如,如果主 meson.build 文件不在 tarball 提取的树的根目录下,则这将非常有用。如果未指定 HOST_FOO_SUBDIR
,则默认为 FOO_SUBDIR
。FOO_CONF_ENV
, to specify additional environment variables to pass to
meson
for the configuration step. By default, empty.
FOO_CONF_ENV
,用于指定传递给 meson
进行配置步骤的额外环境变量。默认为空。FOO_CONF_OPTS
, to specify additional options to pass to meson
for the
configuration step. By default, empty.
FOO_CONF_OPTS
,用于指定传递给配置步骤中的 meson
的附加选项。默认为空。FOO_CFLAGS
, to specify compiler arguments added to the package specific
cross-compile.conf
file c_args
property. By default, the value of
TARGET_CFLAGS
.
FOO_CFLAGS
,用于指定添加到特定软件包 cross-compile.conf
文件 c_args
属性的编译器参数。默认情况下,值为 TARGET_CFLAGS
。FOO_CXXFLAGS
, to specify compiler arguments added to the package specific
cross-compile.conf
file cpp_args
property. By default, the value of
TARGET_CXXFLAGS
.
FOO_CXXFLAGS
,用于指定添加到特定软件包 cross-compile.conf
文件 cpp_args
属性的编译器参数。默认情况下,值为 TARGET_CXXFLAGS
。FOO_LDFLAGS
, to specify compiler arguments added to the package specific
cross-compile.conf
file c_link_args
and cpp_link_args
properties. By
default, the value of TARGET_LDFLAGS
.
FOO_LDFLAGS
,用于指定添加到特定软件包 cross-compile.conf
文件 c_link_args
和 cpp_link_args
属性的编译器参数。默认情况下, TARGET_LDFLAGS
的值。FOO_MESON_EXTRA_BINARIES
, to specify a space-separated list of programs
to add to the [binaries]
section of the meson cross-compilation.conf
configuration file. The format is program-name='/path/to/program'
, with
no space around the =
sign, and with the path of the program between
single quotes. By default, empty. Note that Buildroot already sets the
correct values for c
, cpp
, ar
, strip
, and pkgconfig
.
FOO_MESON_EXTRA_BINARIES
,用于指定要添加到 meson cross-compilation.conf
配置文件的 [binaries]
部分的程序的空格分隔列表。格式为 program-name='/path/to/program'
, =
符号周围没有空格,并且程序的路径在单引号之间。默认为空。请注意,Buildroot 已经为 c
, cpp
, ar
, strip
和 pkgconfig
设置了正确的值。FOO_MESON_EXTRA_PROPERTIES
, to specify a space-separated list of
properties to add to the [properties]
section of the meson
cross-compilation.conf
configuration file. The format is
property-name=<value>
with no space around the =
sign, and with
single quotes around string values. By default, empty. Note that
Buildroot already sets values for needs_exe_wrapper
, c_args
,
c_link_args
, cpp_args
, cpp_link_args
, sys_root
, and
pkg_config_libdir
.
FOO_MESON_EXTRA_PROPERTIES
,用于指定要添加到 meson cross-compilation.conf
配置文件的 [properties]
部分的属性的空格分隔列表。格式为 property-name=<value>
, =
符号周围没有空格,并且字符串值在单引号之间。默认为空。请注意,Buildroot 已经为 needs_exe_wrapper
, c_args
, c_link_args
, cpp_args
, cpp_link_args
, sys_root
和 pkg_config_libdir
设置了值。FOO_NINJA_ENV
, to specify additional environment variables to pass to
ninja
, meson companion tool in charge of the build operations. By default,
empty.
FOO_NINJA_ENV
,用于指定要传递给 ninja
的额外环境变量, ninja
是负责构建操作的 meson 辅助工具。默认为空。FOO_NINJA_OPTS
, to specify a space-separated list of targets to build. By
default, empty, to build the default target(s).
FOO_NINJA_OPTS
,用于指定要构建的以空格分隔的目标列表。默认情况下为空,表示构建默认目标。Cargo is the package manager for the Rust programming language. It allows the
user to build programs or libraries written in Rust, but it also downloads and
manages their dependencies, to ensure repeatable builds. Cargo packages are
called "crates".
Cargo 是 Rust 编程语言的软件包管理器。它允许用户构建用 Rust 编写的程序或库,还可以下载和管理它们的依赖项,以确保可重复构建。Cargo 软件包被称为 "crates"。
The Config.in
file of Cargo-based package foo should contain:
基于 Cargo 的包 foo 的 Config.in
文件应包含:
01: config BR2_PACKAGE_FOO 02: bool "foo" 03: depends on BR2_PACKAGE_HOST_RUSTC_TARGET_ARCH_SUPPORTS 04: select BR2_PACKAGE_HOST_RUSTC 05: help 06: This is a comment that explains what foo is. 07: 08: http://foosoftware.org/foo/
And the .mk
file for this package should contain:
这个软件包的 .mk
文件应包含:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: FOO_VERSION = 1.0 08: FOO_SOURCE = foo-$(FOO_VERSION).tar.gz 09: FOO_SITE = http://www.foosoftware.org/download 10: FOO_LICENSE = GPL-3.0+ 11: FOO_LICENSE_FILES = COPYING 12: 13: $(eval $(cargo-package))
The Makefile starts with the definition of the standard variables for
package declaration (lines 7 to 11).
Makefile 以标准变量的定义开始,用于包声明(第 7 至 11 行)。
As seen in line 13, it is based on the cargo-package
infrastructure. Cargo will be invoked automatically by this
infrastructure to build and install the package.
正如第 13 行所示,它基于 cargo-package
基础设施。货物将被此基础设施自动调用以构建和安装软件包。
It is still possible to define custom build commands or install
commands (i.e. with FOO_BUILD_CMDS and FOO_INSTALL_TARGET_CMDS).
Those will then replace the commands from the cargo infrastructure.
仍然可以定义自定义构建命令或安装命令(即使用 FOO_BUILD_CMDS 和 FOO_INSTALL_TARGET_CMDS)。然后,这些命令将替换货物基础设施中的命令。
The main macros for the Cargo package infrastructure are
cargo-package
for target packages and host-cargo-package
for host
packages.
Cargo 软件包基础设施的主要宏是 cargo-package
用于目标软件包, host-cargo-package
用于主机软件包。
Just like the generic infrastructure, the Cargo infrastructure works
by defining a number of variables before calling the cargo-package
or host-cargo-package
macros.
就像通用基础设施一样,Cargo 基础设施通过在调用 cargo-package
或 host-cargo-package
宏之前定义多个变量来工作。
First, all the package metadata information variables that exist in
the generic infrastructure also exist in the Cargo infrastructure:
FOO_VERSION
, FOO_SOURCE
, FOO_PATCH
, FOO_SITE
,
FOO_DEPENDENCIES
, FOO_LICENSE
, FOO_LICENSE_FILES
, etc.
首先,所有存在于通用基础设施中的软件包元数据信息变量也存在于 Cargo 基础设施中: FOO_VERSION
, FOO_SOURCE
, FOO_PATCH
, FOO_SITE
, FOO_DEPENDENCIES
, FOO_LICENSE
, FOO_LICENSE_FILES
等。
A few additional variables, specific to the Cargo infrastructure, can
also be defined. Many of them are only useful in very specific cases,
typical packages will therefore only use a few of them.
还可以定义一些与货物基础设施相关的额外变量。其中许多只在非常特定的情况下有用,因此典型的包裹通常只会使用其中的一些。
FOO_SUBDIR
may contain the name of a subdirectory inside the package
that contains the Cargo.toml file. This is useful, if for example, it
is not at the root of the tree extracted by the tarball. If
HOST_FOO_SUBDIR
is not specified, it defaults to FOO_SUBDIR
.
FOO_SUBDIR
可能包含包含 Cargo.toml 文件的包中子目录的名称。例如,如果它不在 tarball 提取的树的根目录下,这将很有用。如果未指定 HOST_FOO_SUBDIR
,则默认为 FOO_SUBDIR
。FOO_CARGO_ENV
can be used to pass additional variables in the
environment of cargo
invocations. It used at both build and
installation time
FOO_CARGO_ENV
可用于在 cargo
调用的环境中传递附加变量。它在构建和安装时使用FOO_CARGO_BUILD_OPTS
can be used to pass additional options to
cargo
at build time.
FOO_CARGO_BUILD_OPTS
可用于在构建时向 cargo
传递附加选项。FOO_CARGO_INSTALL_OPTS
can be used to pass additional options to
cargo
at install time.
FOO_CARGO_INSTALL_OPTS
可用于在安装时向 cargo
传递附加选项。A crate can depend on other libraries from crates.io or git
repositories, listed in its Cargo.toml
file. Buildroot automatically
takes care of downloading such dependencies as part of the download
step of packages that use the cargo-package
infrastructure. Such
dependencies are then kept together with the package source code in
the tarball cached in Buildroot’s DL_DIR
, and therefore the hash of
the package’s tarball includes such dependencies.
一个板条箱可以依赖于来自 crates.io 或 git 存储库的其他库,这些库在其 Cargo.toml
文件中列出。 Buildroot 会自动在使用 cargo-package
基础设施的软件包的下载步骤中下载这些依赖项。然后,这些依赖项将与软件包源代码一起保存在 Buildroot 的 DL_DIR
中的 tarball 中,因此软件包的 tarball 的哈希值包括这些依赖项。
This mechanism ensures that any change in the dependencies will be
detected, and allows the build to be performed completely offline.
这种机制确保会检测到依赖关系的任何更改,并允许完全脱机执行构建。
This infrastructure applies to Go packages that use the standard
build system and use bundled dependencies.
此基础设施适用于使用标准构建系统和捆绑依赖项的 Go 包。
First, let’s see how to write a .mk
file for a go package,
with an example :
首先,让我们看看如何为 Go 包编写一个 .mk
文件,附带一个示例:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: FOO_VERSION = 1.0 08: FOO_SITE = $(call github,bar,foo,$(FOO_VERSION)) 09: FOO_LICENSE = BSD-3-Clause 10: FOO_LICENSE_FILES = LICENSE 11: 12: $(eval $(golang-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8, we declare the upstream location of the package, here
fetched from Github, since a large number of Go packages are hosted on
Github.
在第 8 行,我们声明了软件包的上游位置,这里是从 Github 获取的,因为许多 Go 软件包都托管在 Github 上。
On line 9 and 10, we give licensing details about the package.
在第 9 行和第 10 行,我们提供有关软件包的许可详细信息。
Finally, on line 12, we invoke the golang-package
macro that
generates all the Makefile rules that actually allow the package to be
built.
最后,在第 12 行,我们调用 golang-package
宏,该宏生成所有实际允许构建软件包的 Makefile 规则。
In their Config.in
file, packages using the golang-package
infrastructure should depend on BR2_PACKAGE_HOST_GO_TARGET_ARCH_SUPPORTS
because Buildroot will automatically add a dependency on host-go
to such packages.
If you need CGO support in your package, you must add a dependency on
BR2_PACKAGE_HOST_GO_TARGET_CGO_LINKING_SUPPORTS
.
在他们的 Config.in
文件中,使用 golang-package
基础设施的软件包应该依赖于 BR2_PACKAGE_HOST_GO_TARGET_ARCH_SUPPORTS
,因为 Buildroot 会自动为这些软件包添加对 host-go
的依赖。如果您的软件包需要 CGO 支持,您必须添加对 BR2_PACKAGE_HOST_GO_TARGET_CGO_LINKING_SUPPORTS
的依赖。
The main macro of the Go package infrastructure is
golang-package
. It is similar to the generic-package
macro. The
ability to build host packages is also available, with the
host-golang-package
macro.
Host packages built by host-golang-package
macro should depend on
BR2_PACKAGE_HOST_GO_HOST_ARCH_SUPPORTS.
Go 软件包基础设施的主要宏是 golang-package
。它类似于 generic-package
宏。还可以构建主机软件包,使用 host-golang-package
宏。由 host-golang-package
宏构建的主机软件包应该依赖于 BR2_PACKAGE_HOST_GO_HOST_ARCH_SUPPORTS。
Just like the generic infrastructure, the Go infrastructure works
by defining a number of variables before calling the golang-package
.
就像通用基础设施一样,Go 基础设施是通过在调用 golang-package
之前定义一些变量来工作的。
All the package metadata information variables that exist in the
generic package infrastructure also
exist in the Go infrastructure: FOO_VERSION
, FOO_SOURCE
,
FOO_PATCH
, FOO_SITE
, FOO_SUBDIR
, FOO_DEPENDENCIES
,
FOO_LICENSE
, FOO_LICENSE_FILES
, FOO_INSTALL_STAGING
, etc.
所有存在于通用软件包基础设施中的软件包元数据信息变量也存在于 Go 基础设施中: FOO_VERSION
, FOO_SOURCE
, FOO_PATCH
, FOO_SITE
, FOO_SUBDIR
, FOO_DEPENDENCIES
, FOO_LICENSE
, FOO_LICENSE_FILES
, FOO_INSTALL_STAGING
,等等。
Note that it is not necessary to add host-go
in the
FOO_DEPENDENCIES
variable of a package, since this basic dependency
is automatically added as needed by the Go package infrastructure.
请注意,在软件包的 FOO_DEPENDENCIES
变量中不需要添加 host-go
,因为这种基本依赖关系会根据 Go 软件包基础设施的需要自动添加。
A few additional variables, specific to the Go infrastructure, can
optionally be defined, depending on the package’s needs. Many of them
are only useful in very specific cases, typical packages will
therefore only use a few of them, or none.
根据包的需求,可以选择性地定义一些特定于 Go 基础设施的附加变量。其中许多变量仅在非常特定的情况下有用,因此典型的包通常只会使用其中的一些,或者根本不使用。
FOO_GOMOD
variable. If not specified, it defaults to
URL-domain/1st-part-of-URL/2nd-part-of-URL
, e.g FOO_GOMOD
will
take the value github.com/bar/foo
for a package that specifies
FOO_SITE = $(call github,bar,foo,$(FOO_VERSION))
. The Go package
infrastructure will automatically generate a minimal go.mod
file
in the package source tree if it doesn’t exist.
FOO_GOMOD
变量中指定其 Go 模块名称。如果未指定,则默认为 URL-domain/1st-part-of-URL/2nd-part-of-URL
,例如,对于指定 FOO_SITE = $(call github,bar,foo,$(FOO_VERSION))
的包, FOO_GOMOD
将取值 github.com/bar/foo
。如果包源代码树中不存在,Go 包基础设施将自动生成一个最小的 go.mod
文件。FOO_LDFLAGS
and FOO_TAGS
can be used to pass respectively the
LDFLAGS
or the TAGS
to the go
build command.
FOO_LDFLAGS
和 FOO_TAGS
可分别用于将 LDFLAGS
或 TAGS
传递给 go
构建命令。
FOO_BUILD_TARGETS
can be used to pass the list of targets that
should be built. If FOO_BUILD_TARGETS
is not specified, it
defaults to .
. We then have two cases:
FOO_BUILD_TARGETS
可用于传递应构建的目标列表。如果未指定 FOO_BUILD_TARGETS
,则默认为 .
。然后有两种情况:
FOO_BUILD_TARGETS
is .
. In this case, we assume only one binary
will be produced, and that by default we name it after the package
name. If that is not appropriate, the name of the produced binary
can be overridden using FOO_BIN_NAME
.
FOO_BUILD_TARGETS
是 .
。在这种情况下,我们假设只会生成一个二进制文件,默认情况下我们将其命名为包名称。如果不合适,可以使用 FOO_BIN_NAME
覆盖生成的二进制文件的名称。FOO_BUILD_TARGETS
is not .
. In this case, we iterate over the
values to build each target, and for each produced a binary that is
the non-directory component of the target. For example if
FOO_BUILD_TARGETS = cmd/docker cmd/dockerd
the binaries produced
are docker
and dockerd
.
FOO_BUILD_TARGETS
不是 .
。在这种情况下,我们遍历值以构建每个目标,并为每个生成一个二进制文件,该文件是目标的非目录组件。例如,如果 FOO_BUILD_TARGETS = cmd/docker cmd/dockerd
生成的二进制文件是 docker
和 dockerd
。FOO_INSTALL_BINS
can be used to pass the list of binaries that
should be installed in /usr/bin
on the target. If
FOO_INSTALL_BINS
is not specified, it defaults to the lower-case
name of package.
FOO_INSTALL_BINS
可用于传递应安装在目标 /usr/bin
上的二进制文件列表。如果未指定 FOO_INSTALL_BINS
,则默认为软件包的小写名称。With the Go infrastructure, all the steps required to build and
install the packages are already defined, and they generally work well
for most Go-based packages. However, when required, it is still
possible to customize what is done in any particular step:
使用 Go 基础设施,构建和安装软件包所需的所有步骤已经定义,并且它们通常适用于大多数基于 Go 的软件包。但是,如果需要,仍然可以自定义特定步骤中的操作:
.mk
file defines its own
FOO_BUILD_CMDS
variable, it will be used instead of the default Go
one. However, using this method should be restricted to very
specific cases. Do not use it in the general case.
.mk
文件定义了自己的 FOO_BUILD_CMDS
变量,则会使用它,而不是默认的 Go 变量。但是,应该将此方法限制在非常特定的情况下使用。不要在一般情况下使用它。A Go package can depend on other Go modules, listed in its go.mod
file. Buildroot automatically takes care of downloading such
dependencies as part of the download step of packages that use the
golang-package
infrastructure. Such dependencies are then kept
together with the package source code in the tarball cached in
Buildroot’s DL_DIR
, and therefore the hash of the package’s tarball
includes such dependencies.
一个 Go 包可以依赖于其他 Go 模块,这些模块在其 go.mod
文件中列出。Buildroot 会自动在使用 golang-package
基础设施的软件包的下载步骤中下载这些依赖项。这些依赖项随后会与软件包源代码一起保存在 Buildroot 的 DL_DIR
中的 tarball 中,因此软件包的 tarball 的哈希值包括这些依赖项。
This mechanism ensures that any change in the dependencies will be
detected, and allows the build to be performed completely offline.
这种机制确保任何依赖关系的更改都将被检测到,并允许完全离线执行构建。
First, let’s see how to write a .mk
file for a QMake-based package, with
an example :
首先,让我们看看如何为基于 QMake 的软件包编写 .mk
文件,附带示例:
01: ################################################################################ 02: # 03: # libfoo 04: # 05: ################################################################################ 06: 07: LIBFOO_VERSION = 1.0 08: LIBFOO_SOURCE = libfoo-$(LIBFOO_VERSION).tar.gz 09: LIBFOO_SITE = http://www.foosoftware.org/download 10: LIBFOO_CONF_OPTS = QT_CONFIG+=bar QT_CONFIG-=baz 11: LIBFOO_DEPENDENCIES = bar 12: 13: $(eval $(qmake-package))
On line 7, we declare the version of the package.
在第 7 行,我们声明了包的版本。
On line 8 and 9, we declare the name of the tarball (xz-ed tarball
recommended) and the location of the tarball on the Web. Buildroot
will automatically download the tarball from this location.
在第 8 和 9 行,我们声明了 tarball 的名称(建议使用 xz-ed tarball)和 tarball 在 Web 上的位置。Buildroot 将自动从此位置下载 tarball。
On line 10, we tell Buildroot what options to enable for libfoo.
在第 10 行,我们告诉 Buildroot 要为 libfoo 启用哪些选项。
On line 11, we tell Buildroot the dependencies of libfoo.
在第 11 行,我们告诉 Buildroot libfoo 的依赖关系。
Finally, on line line 13, we invoke the qmake-package
macro that generates all the Makefile rules that actually allows the
package to be built.
最后,在第 13 行,我们调用 qmake-package
宏,生成所有实际允许构建软件包的 Makefile 规则。
The main macro of the QMake package infrastructure is qmake-package
.
It is similar to the generic-package
macro.
QMake 软件包基础设施的主要宏是 qmake-package
。它类似于 generic-package
宏。
Just like the generic infrastructure, the QMake infrastructure works
by defining a number of variables before calling the qmake-package
macro.
就像通用基础设施一样,QMake 基础设施在调用 qmake-package
宏之前通过定义一些变量来工作。
First, all the package metadata information variables that exist in
the generic infrastructure also exist in the QMake infrastructure:
LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
,
LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
,
LIBFOO_INSTALL_TARGET
.
首先,在通用基础设施中存在的所有软件包元数据信息变量也存在于 QMake 基础设施中: LIBFOO_VERSION
, LIBFOO_SOURCE
, LIBFOO_PATCH
, LIBFOO_SITE
, LIBFOO_SUBDIR
, LIBFOO_DEPENDENCIES
, LIBFOO_INSTALL_STAGING
, LIBFOO_INSTALL_TARGET
。
An additional variable, specific to the QMake infrastructure, can
also be defined.
还可以定义一个特定于 QMake 基础设施的附加变量。
LIBFOO_CONF_ENV
, to specify additional environment variables to
pass to the qmake
script for the configuration step. By default, empty.
LIBFOO_CONF_ENV
,用于指定传递给配置步骤的 qmake
脚本的附加环境变量。默认为空。LIBFOO_CONF_OPTS
, to specify additional options to pass to the
qmake
script for the configuration step. By default, empty.
LIBFOO_CONF_OPTS
,用于在配置步骤中传递给 qmake
脚本的额外选项。默认为空。LIBFOO_MAKE_ENV
, to specify additional environment variables to the
make
command during the build and install steps. By default, empty.
LIBFOO_MAKE_ENV
,在构建和安装步骤期间向 make
命令指定额外的环境变量。默认为空。LIBFOO_MAKE_OPTS
, to specify additional targets to pass to the
make
command during the build step. By default, empty.
LIBFOO_MAKE_OPTS
,在构建步骤期间向 make
命令指定额外的目标。默认为空。LIBFOO_INSTALL_STAGING_OPTS
, to specify additional targets to pass
to the make
command during the staging installation step. By default,
install
.
LIBFOO_INSTALL_STAGING_OPTS
,在分阶段安装步骤期间向 make
命令指定额外的目标。默认为 install
。LIBFOO_INSTALL_TARGET_OPTS
, to specify additional targets to pass
to the make
command during the target installation step. By default,
install
.
LIBFOO_INSTALL_TARGET_OPTS
,在目标安装步骤期间传递给 make
命令的额外目标。默认情况下, install
。LIBFOO_SYNC_QT_HEADERS
, to run syncqt.pl before qmake. Some packages
need this to have a properly populated include directory before
running the build.
LIBFOO_SYNC_QT_HEADERS
,在运行 qmake 之前运行 syncqt.pl。有些软件包需要在运行构建之前具有正确填充的包含目录。Buildroot offers a helper infrastructure to make it easy to write packages that
build and install Linux kernel modules. Some packages only contain a kernel
module, other packages contain programs and libraries in addition to kernel
modules. Buildroot’s helper infrastructure supports either case.
Buildroot 提供了一个辅助基础设施,使编写构建和安装 Linux 内核模块的软件包变得容易。一些软件包只包含一个内核模块,其他软件包除内核模块外还包含程序和库。Buildroot 的辅助基础设施支持这两种情况。
Let’s start with an example on how to prepare a simple package that only
builds a kernel module, and no other component:
让我们从一个示例开始,介绍如何准备一个只构建内核模块而不包含其他组件的简单软件包:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: FOO_VERSION = 1.2.3 08: FOO_SOURCE = foo-$(FOO_VERSION).tar.xz 09: FOO_SITE = http://www.foosoftware.org/download 10: FOO_LICENSE = GPL-2.0 11: FOO_LICENSE_FILES = COPYING 12: 13: $(eval $(kernel-module)) 14: $(eval $(generic-package))
Lines 7-11 define the usual meta-data to specify the version, archive name,
remote URI where to find the package source, licensing information.
第 7-11 行定义了通常的元数据,用于指定版本、存档名称、远程 URI 以及包源的许可信息。
On line 13, we invoke the kernel-module
helper infrastructure, that
generates all the appropriate Makefile rules and variables to build
that kernel module.
在第 13 行,我们调用 kernel-module
助手基础设施,生成所有适当的 Makefile 规则和变量来构建该内核模块。
Finally, on line 14, we invoke the
generic-package
infrastructure.
最后,在第 14 行,我们调用 generic-package
基础设施。
The dependency on linux
is automatically added, so it is not needed to
specify it in FOO_DEPENDENCIES
.
对 linux
的依赖性会自动添加,因此在 FOO_DEPENDENCIES
中不需要指定它。
What you may have noticed is that, unlike other package infrastructures,
we explicitly invoke a second infrastructure. This allows a package to
build a kernel module, but also, if needed, use any one of other package
infrastructures to build normal userland components (libraries,
executables…). Using the kernel-module
infrastructure on its own is
not sufficient; another package infrastructure must be used.
你可能已经注意到,与其他软件包基础设施不同的是,我们明确调用了第二个基础设施。这允许软件包构建内核模块,但如果需要,也可以使用其他软件包基础设施中的任何一个来构建正常的用户空间组件(库、可执行文件等)。仅仅使用 kernel-module
基础设施是不够的;必须使用另一个软件包基础设施。
Let’s look at a more complex example:
让我们看一个更复杂的例子:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: FOO_VERSION = 1.2.3 08: FOO_SOURCE = foo-$(FOO_VERSION).tar.xz 09: FOO_SITE = http://www.foosoftware.org/download 10: FOO_LICENSE = GPL-2.0 11: FOO_LICENSE_FILES = COPYING 12: 13: FOO_MODULE_SUBDIRS = driver/base 14: FOO_MODULE_MAKE_OPTS = KVERSION=$(LINUX_VERSION_PROBED) 15: 16: ifeq ($(BR2_PACKAGE_LIBBAR),y) 17: FOO_DEPENDENCIES += libbar 18: FOO_CONF_OPTS += --enable-bar 19: FOO_MODULE_SUBDIRS += driver/bar 20: else 21: FOO_CONF_OPTS += --disable-bar 22: endif 23: 24: $(eval $(kernel-module)) 26: $(eval $(autotools-package))
Here, we see that we have an autotools-based package, that also builds
the kernel module located in sub-directory driver/base
and, if libbar
is enabled, the kernel module located in sub-directory driver/bar
, and
defines the variable KVERSION
to be passed to the Linux buildsystem
when building the module(s).
在这里,我们看到一个基于 autotools 的软件包,还构建了位于子目录 driver/base
中的内核模块,如果启用了 libbar,则构建位于子目录 driver/bar
中的内核模块,并定义变量 KVERSION
以在构建模块时传递给 Linux 构建系统。
The main macro for the kernel module infrastructure is kernel-module
.
Unlike other package infrastructures, it is not stand-alone, and requires
any of the other *-package
macros be called after it.
内核模块基础设施的主要宏是 kernel-module
。与其他软件包基础设施不同,它不是独立的,并且需要在其后调用任何其他 *-package
宏。
The kernel-module
macro defines post-build and post-target-install
hooks to build the kernel modules. If the package’s .mk
needs access
to the built kernel modules, it should do so in a post-build hook,
registered after the call to kernel-module
. Similarly, if the
package’s .mk
needs access to the kernel module after it has been
installed, it should do so in a post-install hook, registered after
the call to kernel-module
. Here’s an example:
kernel-module
宏定义了构建内核模块的后构建和后目标安装挂钩。如果软件包的 .mk
需要访问构建的内核模块,则应在调用 kernel-module
后注册后构建挂钩。类似地,如果软件包的 .mk
需要在安装后访问内核模块,则应在调用 kernel-module
后注册后安装挂钩。这里是一个示例:
$(eval $(kernel-module)) define FOO_DO_STUFF_WITH_KERNEL_MODULE # Do something with it... endef FOO_POST_BUILD_HOOKS += FOO_DO_STUFF_WITH_KERNEL_MODULE $(eval $(generic-package))
Finally, unlike the other package infrastructures, there is no
host-kernel-module
variant to build a host kernel module.
最后,与其他软件包基础设施不同,没有 host-kernel-module
变体来构建主机内核模块。
The following additional variables can optionally be defined to further
configure the build of the kernel module:
可以选择定义以下附加变量来进一步配置内核模块的构建:
FOO_MODULE_SUBDIRS
may be set to one or more sub-directories (relative
to the package source top-directory) where the kernel module sources are.
If empty or not set, the sources for the kernel module(s) are considered
to be located at the top of the package source tree.
FOO_MODULE_SUBDIRS
可以设置为一个或多个子目录(相对于软件包源顶级目录),其中包含内核模块的源代码。如果为空或未设置,则认为内核模块的源代码位于软件包源树的顶部。FOO_MODULE_MAKE_OPTS
may be set to contain extra variable definitions
to pass to the Linux buildsystem.
FOO_MODULE_MAKE_OPTS
可以设置为包含要传递给 Linux 构建系统的额外变量定义。You may also reference (but you may not set!) those variables:
您还可以引用(但不可以设置!)这些变量:
LINUX_DIR
contains the path to where the Linux kernel has been
extracted and built.
LINUX_DIR
包含了 Linux 内核被提取和构建的路径。LINUX_VERSION
contains the version string as configured by the user.
LINUX_VERSION
包含用户配置的版本字符串。LINUX_VERSION_PROBED
contains the real version string of the kernel,
retrieved with running make -C $(LINUX_DIR) kernelrelease
LINUX_VERSION_PROBED
包含内核的实际版本字符串,通过运行 make -C $(LINUX_DIR) kernelrelease
检索。
KERNEL_ARCH
contains the name of the current architecture, like arm
,
mips
…
KERNEL_ARCH
包含当前架构的名称,如 arm
, mips
...The Buildroot manual, which you are currently reading, is entirely written
using the AsciiDoc mark-up syntax. The manual is then
rendered to many formats:
您当前正在阅读的 Buildroot 手册完全使用 AsciiDoc 标记语法编写。然后将手册呈现为多种格式:
Although Buildroot only contains one document written in AsciiDoc, there
is, as for packages, an infrastructure for rendering documents using the
AsciiDoc syntax.
虽然 Buildroot 只包含一个用 AsciiDoc 编写的文档,但对于软件包而言,有一个基础设施可用于使用 AsciiDoc 语法渲染文档。
Also as for packages, the AsciiDoc infrastructure is available from a
br2-external tree. This allows documentation for
a br2-external tree to match the Buildroot documentation, as it will be
rendered to the same formats and use the same layout and theme.
同样对于软件包,AsciiDoc 基础设施可以从 br2-external 树中获得。这使得 br2-external 树的文档可以与 Buildroot 文档匹配,因为它将呈现为相同的格式,并使用相同的布局和主题。
Whereas package infrastructures are suffixed with -package
, the document
infrastructures are suffixed with -document
. So, the AsciiDoc infrastructure
is named asciidoc-document
.
虽然软件包基础设施的后缀为 -package
,但文档基础设施的后缀为 -document
。因此,AsciiDoc 基础设施被命名为 asciidoc-document
。
Here is an example to render a simple AsciiDoc document.
这里有一个简单的 AsciiDoc 文档渲染示例。
01: ################################################################################ 02: # 03: # foo-document 04: # 05: ################################################################################ 06: 07: FOO_SOURCES = $(sort $(wildcard $(FOO_DOCDIR)/*)) 08: $(eval $(call asciidoc-document))
On line 7, the Makefile declares what the sources of the document are.
Currently, it is expected that the document’s sources are only local;
Buildroot will not attempt to download anything to render a document.
Thus, you must indicate where the sources are. Usually, the string
above is sufficient for a document with no sub-directory structure.
在第 7 行,Makefile 声明文档的来源。目前,预期文档的来源仅为本地;Buildroot 不会尝试下载任何内容来渲染文档。因此,您必须指示来源在哪里。通常,上述字符串对于没有子目录结构的文档就足够了。
On line 8, we call the asciidoc-document
function, which generates all
the Makefile code necessary to render the document.
在第 8 行,我们调用 asciidoc-document
函数,该函数生成呈现文档所需的所有 Makefile 代码。
The list of variables that can be set in a .mk
file to give metadata
information is (assuming the document name is foo
) :
可以在 .mk
文件中设置的变量列表,以提供元数据信息(假设文档名称为 foo
):
FOO_SOURCES
, mandatory, defines the source files for the document.
FOO_SOURCES
,必填项,定义文档的源文件。FOO_RESOURCES
, optional, may contain a space-separated list of paths
to one or more directories containing so-called resources (like CSS or
images). By default, empty.
FOO_RESOURCES
,可选项,可以包含一个或多个目录路径的空格分隔列表,这些目录包含所谓的资源(如 CSS 或图像)。默认为空。FOO_DEPENDENCIES
, optional, the list of packages (most probably,
host-packages) that must be built before building this document.
FOO_DEPENDENCIES
,可选项,构建此文档之前必须构建的软件包列表(很可能是主机软件包)。FOO_TOC_DEPTH
, FOO_TOC_DEPTH_<FMT>
, optionals, the depth of the
table of content for this document, which can be overridden for the
specified format <FMT>
(see the list of rendered formats, above,
but in uppercase, and with dash replaced by underscore; see example,
below). By default: 1
.
FOO_TOC_DEPTH
, FOO_TOC_DEPTH_<FMT>
,可选项,此文档的内容表深度,可以被指定格式 <FMT>
覆盖(参见上面呈现的格式列表,但大写,并用下划线替换破折号;参见下面的示例)。默认值为: 1
。There are also additional hooks (see Section 18.23, “Hooks available in the various build steps” for general information
on hooks), that a document may set to define extra actions to be done at
various steps:
还有其他附加钩子(参见第 18.23 节,“各构建步骤中可用的钩子”以获取有关钩子的一般信息),文档可以设置这些钩子以定义在各个步骤执行的额外操作:
FOO_POST_RSYNC_HOOKS
to run additional commands after the sources
have been copied by Buildroot. This can for example be used to
generate part of the manual with information extracted from the
tree. As an example, Buildroot uses this hook to generate the tables
in the appendices.
FOO_POST_RSYNC_HOOKS
在 Buildroot 复制源代码后运行额外命令。例如,可以使用此功能从树中提取信息生成手册的一部分。例如,Buildroot 使用此钩子在附录中生成表格。FOO_CHECK_DEPENDENCIES_HOOKS
to run additional tests on required
components to generate the document. In AsciiDoc, it is possible to
call filters, that is, programs that will parse an AsciiDoc block and
render it appropriately (e.g. ditaa or
aafigure).
FOO_CHECK_DEPENDENCIES_HOOKS
运行额外的测试以生成文档所需的组件。在 AsciiDoc 中,可以调用过滤器,即可以解析 AsciiDoc 块并适当地呈现它的程序(例如 ditaa 或 aafigure)。FOO_CHECK_DEPENDENCIES_<FMT>_HOOKS
, to run additional tests for
the specified format <FMT>
(see the list of rendered formats, above).
FOO_CHECK_DEPENDENCIES_<FMT>_HOOKS
,为指定格式 <FMT>
运行额外的测试(请参阅上面呈现格式的列表)。Buildroot sets the following variable that can be used in the definitions
above:
Buildroot 设置了以下变量,可以在上述定义中使用:
$(FOO_DOCDIR)
, similar to $(FOO_PKGDIR)
, contains the path to the
directory containing foo.mk
. It can be used to refer to the document
sources, and can be used in the hooks, especially the post-rsync hook
if parts of the documentation needs to be generated.
$(FOO_DOCDIR)
,类似于 $(FOO_PKGDIR)
,包含了包含 foo.mk
的目录路径。它可用于引用文档源,并可在钩子中使用,特别是如果需要生成文档的部分后同步钩子。$(@D)
, as for traditional packages, contains the path to the directory
where the document will be copied and built.
$(@D)
,对于传统包,包含了文档将被复制和构建的目录路径。Here is a complete example that uses all variables and all hooks:
这里是一个使用所有变量和所有钩子的完整示例:
01: ################################################################################ 02: # 03: # foo-document 04: # 05: ################################################################################ 06: 07: FOO_SOURCES = $(sort $(wildcard $(FOO_DOCDIR)/*)) 08: FOO_RESOURCES = $(sort $(wildcard $(FOO_DOCDIR)/ressources)) 09: 10: FOO_TOC_DEPTH = 2 11: FOO_TOC_DEPTH_HTML = 1 12: FOO_TOC_DEPTH_SPLIT_HTML = 3 13: 14: define FOO_GEN_EXTRA_DOC 15: /path/to/generate-script --outdir=$(@D) 16: endef 17: FOO_POST_RSYNC_HOOKS += FOO_GEN_EXTRA_DOC 18: 19: define FOO_CHECK_MY_PROG 20: if ! which my-prog >/dev/null 2>&1; then \ 21: echo "You need my-prog to generate the foo document"; \ 22: exit 1; \ 23: fi 24: endef 25: FOO_CHECK_DEPENDENCIES_HOOKS += FOO_CHECK_MY_PROG 26: 27: define FOO_CHECK_MY_OTHER_PROG 28: if ! which my-other-prog >/dev/null 2>&1; then \ 29: echo "You need my-other-prog to generate the foo document as PDF"; \ 30: exit 1; \ 31: fi 32: endef 33: FOO_CHECK_DEPENDENCIES_PDF_HOOKS += FOO_CHECK_MY_OTHER_PROG 34: 35: $(eval $(call asciidoc-document))
The Linux kernel package can use some specific infrastructures based on package
hooks for building Linux kernel tools or/and building Linux kernel extensions.
Linux 内核软件包可以使用基于软件包挂钩的特定基础设施来构建 Linux 内核工具和/或构建 Linux 内核扩展。
Buildroot offers a helper infrastructure to build some userspace tools
for the target available within the Linux kernel sources. Since their
source code is part of the kernel source code, a special package,
linux-tools
, exists and re-uses the sources of the Linux kernel that
runs on the target.
Buildroot 提供了一个辅助基础设施,用于为 Linux 内核源代码中可用的目标构建一些用户空间工具。由于它们的源代码是内核源代码的一部分,因此存在一个特殊的软件包, linux-tools
,它使用运行在目标上的 Linux 内核的源代码。
Let’s look at an example of a Linux tool. For a new Linux tool named
foo
, create a new menu entry in the existing
package/linux-tools/Config.in
. This file will contain the option
descriptions related to each kernel tool that will be used and
displayed in the configuration tool. It would basically look like:
让我们看一个 Linux 工具的例子。对于一个名为 foo
的新 Linux 工具,在现有的 package/linux-tools/Config.in
中创建一个新的菜单项。该文件将包含与将要使用和显示在配置工具中的每个内核工具相关的选项描述。基本上看起来像这样:
01: config BR2_PACKAGE_LINUX_TOOLS_FOO 02: bool "foo" 03: select BR2_PACKAGE_LINUX_TOOLS 04: help 05: This is a comment that explains what foo kernel tool is. 06: 07: http://foosoftware.org/foo/
The name of the option starts with the prefix BR2_PACKAGE_LINUX_TOOLS_
,
followed by the uppercase name of the tool (like is done for packages).
选项的名称以前缀 BR2_PACKAGE_LINUX_TOOLS_
开头,后面跟着工具的大写名称(就像为软件包所做的那样)。
Note. Unlike other packages, the linux-tools
package options appear in the
linux
kernel menu, under the Linux Kernel Tools
sub-menu, not under
the Target packages
main menu.
注意。与其他软件包不同, linux-tools
软件包选项出现在 linux
内核菜单中,而不是在 Target packages
主菜单下的 Linux Kernel Tools
子菜单中。
Then for each linux tool, add a new .mk.in
file named
package/linux-tools/linux-tool-foo.mk.in
. It would basically look like:
然后对于每个 Linux 工具,添加一个名为 package/linux-tools/linux-tool-foo.mk.in
的新 .mk.in
文件。基本上看起来像:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: LINUX_TOOLS += foo 08: 09: FOO_DEPENDENCIES = libbbb 10: 11: define FOO_BUILD_CMDS 12: $(TARGET_MAKE_ENV) $(MAKE) -C $(LINUX_DIR)/tools foo 13: endef 14: 15: define FOO_INSTALL_STAGING_CMDS 16: $(TARGET_MAKE_ENV) $(MAKE) -C $(LINUX_DIR)/tools \ 17: DESTDIR=$(STAGING_DIR) \ 18: foo_install 19: endef 20: 21: define FOO_INSTALL_TARGET_CMDS 22: $(TARGET_MAKE_ENV) $(MAKE) -C $(LINUX_DIR)/tools \ 23: DESTDIR=$(TARGET_DIR) \ 24: foo_install 25: endef
On line 7, we register the Linux tool foo
to the list of available
Linux tools.
在第 7 行,我们将 Linux 工具 foo
注册到可用 Linux 工具列表中。
On line 9, we specify the list of dependencies this tool relies on. These
dependencies are added to the Linux package dependencies list only when the
foo
tool is selected.
在第 9 行,我们指定了此工具依赖的依赖项列表。仅当选择 foo
工具时,这些依赖项才会添加到 Linux 软件包依赖项列表中。
The rest of the Makefile, lines 11-25 defines what should be done at the
different steps of the Linux tool build process like for a
generic package
. They will actually be
used only when the foo
tool is selected. The only supported commands are
_BUILD_CMDS
, _INSTALL_STAGING_CMDS
and _INSTALL_TARGET_CMDS
.
Makefile 的其余部分,第 11-25 行定义了在 Linux 工具构建过程的不同步骤中应该执行的操作,比如对于 generic package
。只有在选择 foo
工具时才会实际使用它们。唯一支持的命令是 _BUILD_CMDS
, _INSTALL_STAGING_CMDS
和 _INSTALL_TARGET_CMDS
。
Note. One must not call $(eval $(generic-package))
or any other
package infrastructure! Linux tools are not packages by themselves,
they are part of the linux-tools
package.
注意。不能调用 $(eval $(generic-package))
或任何其他软件包基础设施!Linux 工具本身不是软件包,它们是 linux-tools
软件包的一部分。
Some packages provide new features that require the Linux kernel tree
to be modified. This can be in the form of patches to be applied on
the kernel tree, or in the form of new files to be added to the
tree. The Buildroot’s Linux kernel extensions infrastructure provides
a simple solution to automatically do this, just after the kernel
sources are extracted and before the kernel patches are
applied. Examples of extensions packaged using this mechanism are the
real-time extensions Xenomai and RTAI, as well as the set of
out-of-tree LCD screens drivers fbtft
.
一
些软件包提供了需要修改 Linux 内核树的新功能。这可以是要应用于内核树的补丁,也可以是要添加到树中的新文件。Buildroot 的
Linux
内核扩展基础设施提供了一个简单的解决方案,可以在提取内核源代码后自动执行此操作,而在应用内核补丁之前。使用此机制打包的扩展示例包括实时扩展
Xenomai 和 RTAI,以及一组非内核 LCD 屏幕驱动程序 fbtft
。
Let’s look at an example on how to add a new Linux extension foo
.
让我们看一个如何添加新的 Linux 扩展 foo
的示例。
First, create the package foo
that provides the extension: this
package is a standard package; see the previous chapters on how to
create such a package. This package is in charge of downloading the
sources archive, checking the hash, defining the licence informations
and building user space tools if any.
首先,创建提供扩展的包 foo
:这个包是一个标准包;请参阅前几章关于如何创建这样的包。这个包负责下载源代码存档,检查哈希值,定义许可信息,并构建用户空间工具(如果有的话)。
Then create the Linux extension proper: create a new menu entry in
the existing linux/Config.ext.in
. This file contains the option
descriptions related to each kernel extension that will be used and
displayed in the configuration tool. It would basically look like:
然后创建适当的 Linux 扩展:在现有的 linux/Config.ext.in
中创建一个新的菜单条目。该文件包含与将在配置工具中使用和显示的每个内核扩展相关的选项描述。它基本上会看起来像:
01: config BR2_LINUX_KERNEL_EXT_FOO 02: bool "foo" 03: help 04: This is a comment that explains what foo kernel extension is. 05: 06: http://foosoftware.org/foo/
Then for each linux extension, add a new .mk
file named
linux/linux-ext-foo.mk
. It should basically contain:
然后对于每个 Linux 扩展,添加一个名为 linux/linux-ext-foo.mk
的新 .mk
文件。它应该基本包含:
01: ################################################################################ 02: # 03: # foo 04: # 05: ################################################################################ 06: 07: LINUX_EXTENSIONS += foo 08: 09: define FOO_PREPARE_KERNEL 10: $(FOO_DIR)/prepare-kernel-tree.sh --linux-dir=$(@D) 11: endef
On line 7, we add the Linux extension foo
to the list of available
Linux extensions.
在第 7 行,我们将 Linux 扩展 foo
添加到可用 Linux 扩展列表中。
On line 9-11, we define what should be done by the extension to modify
the Linux kernel tree; this is specific to the linux extension and can
use the variables defined by the foo
package, like: $(FOO_DIR)
or
$(FOO_VERSION)
… as well as all the Linux variables, like:
$(LINUX_VERSION)
or $(LINUX_VERSION_PROBED)
, $(KERNEL_ARCH)
…
See the definition of those kernel variables.
在第 9-11 行,我们定义扩展应该如何修改 Linux 内核树;这是特定于 Linux 扩展的,可以使用 foo
包定义的变量,如: $(FOO_DIR)
或 $(FOO_VERSION)
…以及所有 Linux 变量,如: $(LINUX_VERSION)
或 $(LINUX_VERSION_PROBED)
, $(KERNEL_ARCH)
…请参阅这些内核变量的定义。
The generic infrastructure (and as a result also the derived autotools
and cmake infrastructures) allow packages to specify hooks.
These define further actions to perform after existing steps.
Most hooks aren’t really useful for generic packages, since the .mk
file already has full control over the actions performed in each step
of the package construction.
通用基础设施(因此也包括派生的 autotools 和 cmake 基础设施)允许软件包指定钩子。这些定义了在现有步骤之后执行的进一步操作。大多数钩子对于通用软件包并不真正有用,因为 .mk
文件已经完全控制了软件包构建每个步骤中执行的操作。
The following hook points are available:
可用的以下钩子点:
LIBFOO_PRE_DOWNLOAD_HOOKS
LIBFOO_POST_DOWNLOAD_HOOKS
LIBFOO_PRE_EXTRACT_HOOKS
LIBFOO_POST_EXTRACT_HOOKS
LIBFOO_PRE_RSYNC_HOOKS
LIBFOO_POST_RSYNC_HOOKS
LIBFOO_PRE_PATCH_HOOKS
LIBFOO_POST_PATCH_HOOKS
LIBFOO_PRE_CONFIGURE_HOOKS
LIBFOO_POST_CONFIGURE_HOOKS
LIBFOO_PRE_BUILD_HOOKS
LIBFOO_POST_BUILD_HOOKS
LIBFOO_PRE_INSTALL_HOOKS
(for host packages only)
LIBFOO_PRE_INSTALL_HOOKS
(仅适用于主机软件包)LIBFOO_POST_INSTALL_HOOKS
(for host packages only)
LIBFOO_POST_INSTALL_HOOKS
(仅适用于主机软件包)LIBFOO_PRE_INSTALL_STAGING_HOOKS
(for target packages only)
LIBFOO_PRE_INSTALL_STAGING_HOOKS
(仅适用于目标软件包)LIBFOO_POST_INSTALL_STAGING_HOOKS
(for target packages only)
LIBFOO_POST_INSTALL_STAGING_HOOKS
(仅适用于目标软件包)LIBFOO_PRE_INSTALL_TARGET_HOOKS
(for target packages only)
LIBFOO_PRE_INSTALL_TARGET_HOOKS
(仅适用于目标软件包)LIBFOO_POST_INSTALL_TARGET_HOOKS
(for target packages only)
LIBFOO_POST_INSTALL_TARGET_HOOKS
(仅适用于目标软件包)LIBFOO_PRE_INSTALL_IMAGES_HOOKS
LIBFOO_POST_INSTALL_IMAGES_HOOKS
LIBFOO_PRE_LEGAL_INFO_HOOKS
LIBFOO_POST_LEGAL_INFO_HOOKS
LIBFOO_TARGET_FINALIZE_HOOKS
These variables are lists of variable names containing actions to be
performed at this hook point. This allows several hooks to be
registered at a given hook point. Here is an example:
这些变量是包含要在此挂钩点执行的操作的变量名称列表。这允许在给定的挂钩点注册多个挂钩。这里是一个例子:
define LIBFOO_POST_PATCH_FIXUP action1 action2 endef LIBFOO_POST_PATCH_HOOKS += LIBFOO_POST_PATCH_FIXUP
The POST_RSYNC
hook is run only for packages that use a local source,
either through the local
site method or the OVERRIDE_SRCDIR
mechanism. In this case, package sources are copied using rsync
from
the local location into the buildroot build directory. The rsync
command does not copy all files from the source directory, though.
Files belonging to a version control system, like the directories
.git
, .hg
, etc. are not copied. For most packages this is
sufficient, but a given package can perform additional actions using
the POST_RSYNC
hook.
POST_RSYNC
钩子仅用于使用本地源的软件包,可以通过 local
站点方法或 OVERRIDE_SRCDIR
机制。在这种情况下,软件包源使用 rsync
从本地位置复制到构建根目录中。 rsync
命令并不会复制源目录中的所有文件。属于版本控制系统的文件,如目录 .git
, .hg
等,不会被复制。对于大多数软件包来说,这是足够的,但是特定软件包可以使用 POST_RSYNC
钩子执行额外操作。
In principle, the hook can contain any command you want. One specific
use case, though, is the intentional copying of the version control
directory using rsync
. The rsync
command you use in the hook can, among
others, use the following variables:
原则上,挂钩可以包含任何您想要的命令。 一个特定的用例是有意复制版本控制目录使用 rsync
。您在挂钩中使用的 rsync
命令可以使用以下变量之一:
$(SRCDIR)
: the path to the overridden source directory
$(SRCDIR)
:覆盖源目录的路径$(@D)
: the path to the build directory
$(@D)
:构建目录的路径Packages may also register hooks in LIBFOO_TARGET_FINALIZE_HOOKS
.
These hooks are run after all packages are built, but before the
filesystem images are generated. They are seldom used, and your
package probably do not need them.
软件包也可以在 LIBFOO_TARGET_FINALIZE_HOOKS
中注册钩子。这些钩子在所有软件包构建完成后运行,但在生成文件系统映像之前运行。它们很少被使用,您的软件包可能不需要它们。
Many packages that support internationalization use the gettext
library. Dependencies for this library are fairly complicated and
therefore, deserve some explanation.
许多支持国际化的软件包使用 gettext 库。该库的依赖关系相当复杂,因此值得一些解释。
The glibc C library integrates a full-blown implementation of
gettext, supporting translation. Native Language Support is
therefore built-in in glibc.
glibc C 库集成了完整的 gettext 实现,支持翻译。因此,本地语言支持已内置在 glibc 中。
On the other hand, the uClibc and musl C libraries only provide a
stub implementation of the gettext functionality, which allows to
compile libraries and programs using gettext functions, but without
providing the translation capabilities of a full-blown gettext
implementation. With such C libraries, if real Native Language Support
is necessary, it can be provided by the libintl
library of the
gettext
package.
另一方面,uClibc 和 musl C 库只提供了 gettext 功能的存根实现,允许使用 gettext 函数编译库和程序,但没有提供完整 gettext 实现的翻译功能。对于这样的 C 库,如果需要真正的本地语言支持,可以通过 gettext
软件包的 libintl
库提供。
Due to this, and in order to make sure that Native Language Support is
properly handled, packages in Buildroot that can use NLS support
should:
因此,为了确保本地语言支持得到正确处理,Buildroot 中可以使用 NLS 支持的软件包应该:
BR2_SYSTEM_ENABLE_NLS=y
. This
is done automatically for autotools packages and therefore should
only be done for packages using other package infrastructures.
BR2_SYSTEM_ENABLE_NLS=y
时启用 NLS 支持。对于使用 autotools 包的软件包,这将自动完成,因此只应对使用其他软件包基础设施的软件包执行此操作。$(TARGET_NLS_DEPENDENCIES)
to the package
<pkg>_DEPENDENCIES
variable. This addition should be done
unconditionally: the value of this variable is automatically
adjusted by the core infrastructure to contain the relevant list of
packages. If NLS support is disabled, this variable is empty. If
NLS support is enabled, this variable contains host-gettext
so
that tools needed to compile translation files are available on the
host. In addition, if uClibc or musl are used, this variable
also contains gettext
in order to get the full-blown gettext
implementation.
$(TARGET_NLS_DEPENDENCIES)
添加到软件包 <pkg>_DEPENDENCIES
变量中。此添加应无条件进行:此变量的值会自动调整为包含相关软件包列表的核心基础设施。如果禁用 NLS 支持,则此变量为空。如果启用 NLS 支持,则此变量包含 host-gettext
,以便主机上可用于编译翻译文件的工具。此外,如果使用 uClibc 或 musl,则此变量还包含 gettext
,以获取完整的 gettext 实现。$(TARGET_NLS_LIBS)
to the linker flags, so that
the package gets linked with libintl
. This is generally not
needed with autotools packages as they usually detect
automatically that they should link with libintl
. However,
packages using other build systems, or problematic autotools-based
packages may need this. $(TARGET_NLS_LIBS)
should be added
unconditionally to the linker flags, as the core automatically
makes it empty or defined to -lintl
depending on the
configuration.
$(TARGET_NLS_LIBS)
添加到链接器标志中,以便将软件包链接到 libintl
。这通常不适用于 autotools 软件包,因为它们通常会自动检测到应该链接到 libintl
。但是,使用其他构建系统的软件包或存在问题的基于 autotools 的软件包可能需要此操作。应无条件将 $(TARGET_NLS_LIBS)
添加到链接器标志中,因为核心会根据配置使其为空或定义为 -lintl
。No changes should be made to the Config.in
file to support NLS.
不应更改 Config.in
文件以支持 NLS。
Finally, certain packages need some gettext utilities on the target,
such as the gettext
program itself, which allows to retrieve
translated strings, from the command line. In such a case, the package
should:
最后,某些软件包需要在目标上安装一些 gettext 实用程序,例如 gettext
程序本身,它允许从命令行检索翻译后的字符串。在这种情况下,软件包应该:
select BR2_PACKAGE_GETTEXT
in their Config.in
file,
indicating in a comment above that it’s a runtime dependency only.
Config.in
文件中使用 select BR2_PACKAGE_GETTEXT
,在上面的注释中指出这只是一个运行时依赖。gettext
dependency in the DEPENDENCIES
variable of
their .mk
file.
.mk
文件的 DEPENDENCIES
变量中不添加任何 gettext
依赖项。In Buildroot, there is some relationship between:
在 Buildroot 中,有一些关系:
*.mk
file);
*.mk
文件的名称)之间的关系;Config.in
file;
Config.in
文件中声明的配置条目名称之间的关系;It is mandatory to maintain consistency between these elements,
using the following rules:
必须保持这些元素之间的一致性,使用以下规则:
*.mk
name are the package name
itself (e.g.: package/foo-bar_boo/foo-bar_boo.mk
);
*.mk
名称是包名称本身(例如: package/foo-bar_boo/foo-bar_boo.mk
);foo-bar_boo
);
foo-bar_boo
);.
and -
characters substituted with _
, prefixed with BR2_PACKAGE_
(e.g.:
BR2_PACKAGE_FOO_BAR_BOO
);
.
和 -
个字符替换为 _
,前缀为 BR2_PACKAGE_
(例如: BR2_PACKAGE_FOO_BAR_BOO
);*.mk
file variable prefix is the upper case package name
with .
and -
characters substituted with _
(e.g.:
FOO_BAR_BOO_VERSION
).
*.mk
文件变量前缀是大写包名称,其中 .
和 -
个字符替换为 _
(例如: FOO_BAR_BOO_VERSION
)。Buildroot provides a script in utils/check-package
that checks new or
changed files for coding style. It is not a complete language validator,
but it catches many common mistakes. It is meant to run in the actual
files you created or modified, before creating the patch for submission.
Buildroot 在 utils/check-package
中提供了一个脚本,用于检查新文件或更改的文件的编码风格。它不是一个完整的语言验证器,但可以捕捉到许多常见的错误。它旨在在您创建或修改的实际文件中运行,在创建提交补丁之前运行。
This script can be used for packages, filesystem makefiles, Config.in
files, etc. It does not check the files defining the package
infrastructures and some other files containing similar common code.
此脚本可用于软件包、文件系统 makefiles、Config.in 文件等。它不会检查定义软件包基础设施的文件以及一些包含类似通用代码的其他文件。
To use it, run the check-package
script, by telling which files you
created or changed:
要使用它,请运行 check-package
脚本,并告诉您创建或更改了哪些文件:
$ ./utils/check-package package/new-package/*
If you have the utils
directory in your path you can also run:
如果您的路径中有 utils
目录,您也可以运行:
$ cd package/new-package/ $ check-package *
The tool can also be used for packages in a br2-external:
该工具也可用于 br2-external 中的软件包:
$ check-package -b /path/to/br2-ext-tree/package/my-package/*
Once you have added your new package, it is important that you test it
under various conditions: does it build for all architectures? Does it
build with the different C libraries? Does it need threads, NPTL? And
so on…
一旦您添加了新软件包,重要的是在各种条件下对其进行测试:它是否适用于所有架构?它是否与不同的 C 库一起构建?它是否需要线程、NPTL 等等…
Buildroot runs autobuilders which
continuously test random configurations. However, these only build the
master
branch of the git tree, and your new fancy package is not yet
there.
Buildroot 运行自动构建器,不断测试随机配置。但是,这些只构建 git 树的 master
分支,而您的新奇软件包还没有在那里。
Buildroot provides a script in utils/test-pkg
that uses the same base
configurations as used by the autobuilders so you can test your package
in the same conditions.
Buildroot 在 utils/test-pkg
中提供了一个脚本,该脚本使用与自动构建器相同的基本配置,因此您可以在相同的条件下测试您的软件包。
First, create a config snippet that contains all the necessary options
needed to enable your package, but without any architecture or toolchain
option. For example, let’s create a config snippet that just enables
libcurl
, without any TLS backend:
首先,创建一个配置片段,其中包含启用软件包所需的所有必要选项,但不包括任何架构或工具链选项。例如,让我们创建一个仅启用 libcurl
的配置片段,而不包括任何 TLS 后端:
$ cat libcurl.config BR2_PACKAGE_LIBCURL=y
If your package needs more configuration options, you can add them to the
config snippet. For example, here’s how you would test libcurl
with
openssl
as a TLS backend and the curl
program:
如果您的软件包需要更多配置选项,可以将它们添加到配置片段中。例如,这是您如何使用 openssl
作为 TLS 后端和 curl
程序测试 libcurl
的方法:
$ cat libcurl.config BR2_PACKAGE_LIBCURL=y BR2_PACKAGE_LIBCURL_CURL=y BR2_PACKAGE_OPENSSL=y
Then run the test-pkg
script, by telling it what config snippet to use
and what package to test:
然后运行 test-pkg
脚本,告诉它要使用哪个配置片段以及要测试哪个软件包:
$ ./utils/test-pkg -c libcurl.config -p libcurl
By default, test-pkg
will build your package against a subset of the
toolchains used by the autobuilders, which has been selected by the
Buildroot developers as being the most useful and representative
subset. If you want to test all toolchains, pass the -a
option. Note
that in any case, internal toolchains are excluded as they take too
long to build.
默认情况下, test-pkg
将使用由 Buildroot 开发人员选择的最有用和代表性的工具链子集来构建您的软件包。如果您想测试所有工具链,请传递 -a
选项。请注意,在任何情况下,内部工具链都被排除在外,因为构建时间太长。
The output lists all toolchains that are tested and the corresponding
result (excerpt, results are fake):
输出列出了所有经过测试的工具链以及相应的结果(摘录,结果为虚构):
$ ./utils/test-pkg -c libcurl.config -p libcurl armv5-ctng-linux-gnueabi [ 1/11]: OK armv7-ctng-linux-gnueabihf [ 2/11]: OK br-aarch64-glibc [ 3/11]: SKIPPED br-arcle-hs38 [ 4/11]: SKIPPED br-arm-basic [ 5/11]: FAILED br-arm-cortex-a9-glibc [ 6/11]: OK br-arm-cortex-a9-musl [ 7/11]: FAILED br-arm-cortex-m4-full [ 8/11]: OK br-arm-full [ 9/11]: OK br-arm-full-nothread [10/11]: FAILED br-arm-full-static [11/11]: OK 11 builds, 2 skipped, 2 build failed, 1 legal-info failed
The results mean: 结果的含义为:
OK
: the build was successful.
OK
:构建成功。SKIPPED
: one or more configuration options listed in the config
snippet were not present in the final configuration. This is due to
options having dependencies not satisfied by the toolchain, such as
for example a package that depends on BR2_USE_MMU
with a noMMU
toolchain. The missing options are reported in missing.config
in
the output build directory (~/br-test-pkg/TOOLCHAIN_NAME/
by
default).
SKIPPED
:配置片段中列出的一个或多个配置选项在最终配置中不存在。这是由于选项具有依赖项,而工具链无法满足这些依赖项,例如一个与 noMMU 工具链不兼容的软件包。缺失的选项将在输出构建目录中的 missing.config
中报告(默认为 ~/br-test-pkg/TOOLCHAIN_NAME/
)。
FAILED
: the build failed. Inspect the logfile
file in the output
build directory to see what went wrong:
FAILED
:构建失败。检查输出构建目录中的 logfile
文件,查看出了什么问题:
dirclean
for the package) failed.
dirclean
)失败。When there are failures, you can just re-run the script with the same
options (after you fixed your package); the script will attempt to
re-build the package specified with -p
for all toolchains, without
the need to re-build all the dependencies of that package.
当出现失败时,您可以使用相同的选项重新运行脚本(在修复软件包后);脚本将尝试为所有工具链重新构建指定为 -p
的软件包,而无需重新构建该软件包的所有依赖项。
The test-pkg
script accepts a few options, for which you can get some
help by running:
test-pkg
脚本接受一些选项,您可以通过运行以下命令获得一些帮助:
$ ./utils/test-pkg -h
Packages on GitHub often don’t have a download area with release tarballs.
However, it is possible to download tarballs directly from the repository
on GitHub. As GitHub is known to have changed download mechanisms in the
past, the github helper function should be used as shown below.
GitHub 上的软件包通常没有带有发布 tarballs 的下载区域。但是,可以直接从 GitHub 存储库下载 tarballs。由于众所周知 GitHub 在过去改变了下载机制,因此应使用如下所示的 github 助手函数。
# Use a tag or a full commit ID FOO_VERSION = 1.0 FOO_SITE = $(call github,<user>,<package>,v$(FOO_VERSION))
Notes 注意事项
foo-f6fb6654af62045239caed5950bc6c7971965e60.tar.gz
),
so it is not necessary to specify it in the .mk
file.
foo-f6fb6654af62045239caed5950bc6c7971965e60.tar.gz
),因此在 .mk
文件中不需要指定它。v
in v1.0
, then the
VERSION
variable should contain just 1.0
, and the v
should be
added directly in the SITE
variable, as illustrated above. This
ensures that the VERSION
variable value can be used to match
against release-monitoring.org
results.
v
在 v1.0
中时, VERSION
变量应该只包含 1.0
,并且 v
应该直接添加到 SITE
变量中,如上所示。这样可以确保 VERSION
变量值可用于与 release-monitoring.org 的结果进行匹配。If the package you wish to add does have a release section on GitHub, the
maintainer may have uploaded a release tarball, or the release may just point
to the automatically generated tarball from the git tag. If there is a
release tarball uploaded by the maintainer, we prefer to use that since it
may be slightly different (e.g. it contains a configure script so we don’t
need to do AUTORECONF).
如
果您希望添加的软件包在 GitHub 上有一个发布部分,维护者可能已经上传了一个发布 tar 包,或者发布可能只是指向从 git 标签自动生成的
tar 包。如果维护者上传了一个发布 tar 包,我们更倾向于使用它,因为它可能略有不同(例如,它包含一个配置脚本,因此我们不需要执行
AUTORECONF)。
You can see on the release page if it’s an uploaded tarball or a git tag:
您可以在发布页面上看到它是一个上传的 tar 包还是一个 git 标签:
FOO_SITE
, and not use the
github helper.
FOO_SITE
,而不使用 github 助手。In a similar way to the github
macro described in
Section 18.25.4, “How to add a package from GitHub”, Buildroot also provides the gitlab
macro
to download from Gitlab repositories. It can be used to download
auto-generated tarballs produced by Gitlab, either for specific tags
or commits:
与第 18.25.4 节“如何从 GitHub 添加软件包”中描述的 github
宏类似,Buildroot 还提供了 gitlab
宏用于从 Gitlab 存储库下载。它可用于下载由 Gitlab 生成的 tarballs,可以是特定的标签或提交:
# Use a tag or a full commit ID FOO_VERSION = 1.0 FOO_SITE = $(call gitlab,<user>,<package>,v$(FOO_VERSION))
By default, it will use a .tar.gz
tarball, but Gitlab also provides
.tar.bz2
tarballs, so by adding a <pkg>_SOURCE
variable, this
.tar.bz2
tarball can be used:
默认情况下,它将使用 .tar.gz
tarball,但 Gitlab 还提供 .tar.bz2
tarballs,因此通过添加 <pkg>_SOURCE
变量,可以使用此 .tar.bz2
tarball:
# Use a tag or a full commit ID FOO_VERSION = 1.0 FOO_SITE = $(call gitlab,<user>,<package>,v$(FOO_VERSION)) FOO_SOURCE = foo-$(FOO_VERSION).tar.bz2
If there is a specific tarball uploaded by the upstream developers in
https://gitlab.com/<project>/releases/
, do not use this macro, but
rather use directly the link to the tarball.
如果上游开发人员在 https://gitlab.com/<project>/releases/
中上传了特定的 tarball,请勿使用此宏,而是直接使用 tarball 的链接。
As you can see, adding a software package to Buildroot is simply a
matter of writing a Makefile using an existing example and modifying it
according to the compilation process required by the package.
正如您所看到的,将软件包添加到 Buildroot 只是编写一个 Makefile 的问题,使用现有示例并根据软件包所需的编译过程进行修改。
If you package software that might be useful for other people, don’t
forget to send a patch to the Buildroot mailing list (see
Section 22.5, “Submitting patches”)!
如果您打包的软件可能对其他人有用,请不要忘记向 Buildroot 邮件列表发送补丁(请参阅第 22.5 节“提交补丁”)!
While integrating a new package or updating an existing one, it may be
necessary to patch the source of the software to get it cross-built within
Buildroot.
在集成新软件包或更新现有软件包时,可能需要打补丁软件源代码,以便在 Buildroot 中进行交叉构建。
Buildroot offers an infrastructure to automatically handle this during
the builds. It supports three ways of applying patch sets: downloaded patches,
patches supplied within buildroot and patches located in a user-defined
global patch directory.
Buildroot 提供了一个基础设施,在构建过程中自动处理此问题。它支持三种应用补丁集的方式:下载的补丁、在 buildroot 内提供的补丁和位于用户定义的全局补丁目录中的补丁。
If it is necessary to apply a patch that is available for download, then add it
to the <packagename>_PATCH
variable. If an entry contains ://
,
then Buildroot will assume it is a full URL and download the patch
from this location. Otherwise, Buildroot will assume that the patch should be
downloaded from <packagename>_SITE
. It can be a single patch,
or a tarball containing a patch series.
如果需要应用可下载的补丁,则将其添加到 <packagename>_PATCH
变量中。如果条目包含 ://
,则 Buildroot 将假定它是完整的 URL,并从此位置下载补丁。否则,Buildroot 将假定应从 <packagename>_SITE
下载补丁。它可以是单个补丁,也可以是包含补丁系列的 tarball。
Like for all downloads, a hash should be added to the <packagename>.hash
file.
与所有下载一样,应向 <packagename>.hash
文件添加哈希。
This method is typically used for packages from Debian.
此方法通常用于来自 Debian 的软件包。
Most patches are provided within Buildroot, in the package
directory; these typically aim to fix cross-compilation, libc support,
or other such issues.
大多数补丁都在 Buildroot 中提供,在软件包目录中;这些补丁通常旨在修复交叉编译、libc 支持或其他类似问题。
These patch files should be named <number>-<description>.patch
.
这些补丁文件应命名为 <number>-<description>.patch
。
Notes 注意事项
<number>
in the patch file name refers to the apply order,
and shall start at 1; It is preferred to pad the number with zeros up to 4
digits, like git-format-patch does. E.g.: 0001-foobar-the-buz.patch
<number>
指的是应用顺序,应从 1 开始;最好用 0 填充数字,直到 4 位数,就像 git-format-patch 一样。例如: 0001-foobar-the-buz.patch
git format-patch -N
command, since this
numbering is automatically added for series. For example, the patch
subject line should look like Subject: [PATCH] foobar the buz
rather
than Subject: [PATCH n/m] foobar the buz
.
git format-patch -N
命令生成补丁,因为此编号会自动添加到系列中。例如,补丁主题行应该是 Subject: [PATCH] foobar the buz
,而不是 Subject: [PATCH n/m] foobar the buz
。<package>-<number>-<description>.patch
, but that is
no longer the case. Existing packages will be fixed as time passes. Do
not prefix patches with the package name.<package>-<number>-<description>.patch
,但现在不再需要。随着时间的推移,现有软件包将被修复。不要以软件包名称为前缀。
series
file, as used by quilt
, could also be added in
the package directory. In that case, the series
file defines the patch
application order. This is deprecated, and will be removed in the future.
Do not use a series file.quilt
使用的 series
文件也可以添加到包目录中。在这种情况下, series
文件定义了补丁应用顺序。这已被弃用,并将在将来移除。不要使用系列文件。
The BR2_GLOBAL_PATCH_DIR
configuration file option can be
used to specify a space separated list of one or more directories
containing global package patches. See Section 9.8.1, “Providing extra patches” for
details.
" BR2_GLOBAL_PATCH_DIR
"配置文件选项可用于指定一个或多个包含全局软件包补丁的空格分隔列表。有关详细信息,请参阅第 9.8.1 节“提供额外补丁”。
<packagename>_PRE_PATCH_HOOKS
commands if defined;
<packagename>_PRE_PATCH_HOOKS
"命令;*.rej
files;
*.rej
文件;<packagename>_PATCH
is defined, then patches from these
tarballs are applied;
<packagename>_PATCH
已定义,则应用这些 tar 包中的补丁;
If there are some *.patch
files in the package’s Buildroot
directory or in a package subdirectory named <packageversion>
,
then:
如果在软件包的构建目录中或在名为 <packageversion>
的软件包子目录中存在一些 *.patch
文件,则:
series
file exists in the package directory, then patches are
applied according to the series
file;
series
文件,则根据 series
文件应用补丁;*.patch
are applied in alphabetical
order.
So, to ensure they are applied in the right order, it is highly
recommended to name the patch files like this:
<number>-<description>.patch
, where <number>
refers to the
apply order.
*.patch
匹配的补丁文件。因此,为确保它们按正确顺序应用,强烈建议将补丁文件命名为 <number>-<description>.patch
,其中 <number>
表示应用顺序。BR2_GLOBAL_PATCH_DIR
is defined, the directories will be
enumerated in the order they are specified. The patches are applied
as described in the previous step.
BR2_GLOBAL_PATCH_DIR
,则目录将按照指定的顺序枚举。补丁将按照上一步骤中描述的方式应用。<packagename>_POST_PATCH_HOOKS
commands if defined.
<packagename>_POST_PATCH_HOOKS
,则运行相应的命令。If something goes wrong in the steps 3 or 4, then the build fails.
如果在第 3 步或第 4 步出现问题,则构建将失败。
Patches are released under the same license as the software they apply
to (see Section 13.2, “Complying with the Buildroot license”).
补丁以与其应用的软件相同的许可证发布(请参阅第 13.2 节“遵守 Buildroot 许可证”)。
A message explaining what the patch does, and why it is needed, should
be added in the header commentary of the patch.
应在补丁的头部注释中添加解释补丁功能及其必要性的消息。
You should add a Signed-off-by
statement in the header of the each
patch to help with keeping track of the changes and to certify that the
patch is released under the same license as the software that is modified.
您应该在每个补丁的标题中添加一个 Signed-off-by
语句,以帮助跟踪更改并证明该补丁是在修改的软件相同许可证下发布的。
If the software is under version control, it is recommended to use the
upstream SCM software to generate the patch set.
如果软件处于版本控制之下,建议使用上游 SCM 软件生成补丁集。
Otherwise, concatenate the header with the output of the
diff -purN package-version.orig/ package-version/
command.
否则,将标题与 diff -purN package-version.orig/ package-version/
命令的输出连接起来。
If you update an existing patch (e.g. when bumping the package version),
make sure the existing From header and Signed-off-by tags are not
removed, but do update the rest of the patch comment when appropriate.
如果您更新现有的补丁(例如,当提升软件包版本时),请确保不删除现有的发件人标头和已签署标签,但在适当时更新补丁评论的其余部分。
At the end, the patch should look like:
最后,补丁应该如下所示:
configure.ac: add C++ support test Signed-off-by: John Doe <john.doe@noname.org> --- configure.ac.orig +++ configure.ac @@ -40,2 +40,12 @@ AC_PROG_MAKE_SET + +AC_CACHE_CHECK([whether the C++ compiler works], + [rw_cv_prog_cxx_works], + [AC_LANG_PUSH([C++]) + AC_LINK_IFELSE([AC_LANG_PROGRAM([], [])], + [rw_cv_prog_cxx_works=yes], + [rw_cv_prog_cxx_works=no]) + AC_LANG_POP([C++])]) + +AM_CONDITIONAL([CXX_WORKS], [test "x$rw_cv_prog_cxx_works" = "xyes"])
Ideally, all patches should document an upstream patch or patch submission, when
applicable, via the Upstream
trailer.
理想情况下,所有补丁应该记录一个上游补丁或补丁提交,如果适用的话,通过 Upstream
trailer。
When backporting an upstream patch that has been accepted into mainline, it is
preferred that the URL to the commit is referenced:
当将已被主线接受的上游补丁进行回溯时,最好引用提交的提交 URL:
Upstream: <URL to upstream commit>
If a new issue is identified in Buildroot and upstream is generally affected by
the issue (it’s not a Buildroot specific issue), users should submit the patch
upstream and provide a link to that submission when possible:
如果在 Buildroot 中发现了一个新问题,并且上游通常受到该问题的影响(这不是一个 Buildroot 特定的问题),用户应该将补丁提交到上游,并在可能时提供该提交的链接:
Upstream: <URL to upstream mailing list submission or merge request>
Patches that have been submitted but were denied upstream should note that and
include comments about why the patch is being used despite the upstream status.
已提交但被上游拒绝的补丁应该注明,并包括有关为何尽管上游状态被使用的评论。
Note: in any of the above scenarios, it is also sensible to add a few words
about any changes to the patch that may have been necessary.
注意:在上述任何情况下,还应该添加几句话,说明可能需要对补丁进行的任何更改。
If a patch does not apply upstream then this should be noted with a comment:
如果补丁无法应用到上游,则应在注释中注明。
Upstream: N/A <additional information about why patch is Buildroot specific>
Adding this documentation helps streamline the patch review process during
package version updates.
添加此文档有助于在软件包版本更新期间简化补丁审查流程。
It is possible to instrument the steps Buildroot
does when building
packages. Define the variable BR2_INSTRUMENTATION_SCRIPTS
to contain
the path of one or more scripts (or other executables), in a
space-separated list, you want called before and after each step. The
scripts are called in sequence, with three parameters:
可以在构建软件包时对步骤 Buildroot
进行检测。定义变量 BR2_INSTRUMENTATION_SCRIPTS
以包含一个或多个脚本(或其他可执行文件)的路径,以空格分隔的列表形式,您希望在每个步骤之前和之后调用这些脚本。这些脚本按顺序调用,具有三个参数:
start
or end
to denote the start (resp. the end) of a step;
start
或 end
表示步骤的开始(或结束)。For example : 例如:
make BR2_INSTRUMENTATION_SCRIPTS="/path/to/my/script1 /path/to/my/script2"
The list of steps is:
步骤列表如下:
extract
patch
configure
build
install-host
, when a host-package is installed in $(HOST_DIR)
install-host
,当主机包安装在 $(HOST_DIR)
时
install-target
, when a target-package is installed in $(TARGET_DIR)
install-target
,当目标包安装在 $(TARGET_DIR)
时
install-staging
, when a target-package is installed in $(STAGING_DIR)
install-staging
,当目标软件包安装在 $(STAGING_DIR)
时
install-image
, when a target-package installs files in $(BINARIES_DIR)
install-image
,当目标软件包在 $(BINARIES_DIR)
安装文件时
The script has access to the following variables:
脚本可以访问以下变量:
BR2_CONFIG
: the path to the Buildroot .config file
BR2_CONFIG
:Buildroot .config 文件的路径HOST_DIR
, STAGING_DIR
, TARGET_DIR
: see
Section 18.6.2, “generic-package
reference”HOST_DIR
, STAGING_DIR
, TARGET_DIR
:请参阅第 18.6.2 节,“ generic-package
参考”
BUILD_DIR
: the directory where packages are extracted and built
BUILD_DIR
:包被提取和构建的目录BINARIES_DIR
: the place where all binary files (aka images) are
stored
BINARIES_DIR
:存储所有二进制文件(也称为图像)的位置BASE_DIR
: the base output directory
BASE_DIR
:基本输出目录There are many ways in which you can contribute to Buildroot: analyzing
and fixing bugs, analyzing and fixing package build failures detected by
the autobuilders, testing and reviewing patches sent by other
developers, working on the items in our TODO list and sending your own
improvements to Buildroot or its manual. The following sections give a
little more detail on each of these items.
有
许多方式可以为 Buildroot
做出贡献:分析和修复错误,分析和修复自动构建器检测到的软件包构建失败,测试和审查其他开发人员发送的补丁,处理我们的 TODO
列表中的项目,并将您自己的改进发送到 Buildroot 或其手册。以下各节将更详细地介绍这些项目。
If you are interested in contributing to Buildroot, the first thing you
should do is to subscribe to the Buildroot mailing list. This list is
the main way of interacting with other Buildroot developers and to send
contributions to. If you aren’t subscribed yet, then refer to
Chapter 5, Community resources for the subscription link.
如果您有兴趣为 Buildroot 做出贡献,首先要做的是订阅 Buildroot 邮件列表。这个列表是与其他 Buildroot 开发人员互动和发送贡献的主要方式。如果您还没有订阅,请参考第 5 章,社区资源,获取订阅链接。
If you are going to touch the code, it is highly recommended to use a
git repository of Buildroot, rather than starting from an extracted
source code tarball. Git is the easiest way to develop from and directly
send your patches to the mailing list. Refer to Chapter 3, Getting Buildroot
for more information on obtaining a Buildroot git tree.
如
果您打算触及代码,请强烈建议使用 Buildroot 的 git 存储库,而不是从提取的源代码 tarball 开始。 Git
是从中开发并直接将补丁发送到邮件列表的最简单方法。有关获取 Buildroot git 树的更多信息,请参阅第 3 章“获取
Buildroot”。
A first way of contributing is to have a look at the open bug reports in
the Buildroot bug
tracker. As we strive to keep the bug count as small as possible, all
help in reproducing, analyzing and fixing reported bugs is more than
welcome. Don’t hesitate to add a comment to bug reports reporting your
findings, even if you don’t yet see the full picture.
贡献的第一种方式是查看 Buildroot 错误跟踪器中的开放错误报告。由于我们努力将错误数量保持在尽可能小的范围内,因此欢迎所有在重现、分析和修复报告的错误方面提供帮助。请随时向错误报告添加评论,报告您的发现,即使您尚未看到完整的图片。
The Buildroot autobuilders are a set of build machines that continuously
run Buildroot builds based on random configurations. This is done for
all architectures supported by Buildroot, with various toolchains, and
with a random selection of packages. With the large commit activity on
Buildroot, these autobuilders are a great help in detecting problems
very early after commit.
Buildroot
自动构建器是一组构建机器,它们根据随机配置连续运行 Buildroot 构建。这是针对 Buildroot
支持的所有架构完成的,使用各种工具链,并选择随机的软件包。由于 Buildroot
的大量提交活动,这些自动构建器在提交后非常早期就能帮助检测问题。
All build results are available at http://autobuild.buildroot.org,
statistics are at http://autobuild.buildroot.org/stats.php. Every day,
an overview of all failed packages is sent to the mailing list.
所有构建结果都可以在 http://autobuild.buildroot.org 找到,统计数据在 http://autobuild.buildroot.org/stats.php。每天,所有失败软件包的概述都会发送到邮件列表。
Detecting problems is great, but obviously these problems have to be
fixed as well. Your contribution is very welcome here! There are
basically two things that can be done:
检测问题是很好的,但显然这些问题也必须被解决。您的贡献在这里非常受欢迎!基本上有两件事可以做:
Fixing a problem. When fixing autobuild failures, you should follow
these steps:
解决问题。在修复自动构建失败时,您应遵循以下步骤:
Fixes: http://autobuild.buildroot.org/results/51000a9d4656afe9e0ea6f07b9f8ed374c2e4069
With the amount of patches sent to the mailing list each day, the
maintainer has a very hard job to judge which patches are ready to apply
and which ones aren’t. Contributors can greatly help here by reviewing
and testing these patches.
每天发送到邮件列表的补丁数量很多,维护者很难判断哪些补丁准备好可以应用,哪些不行。贡献者可以通过审查和测试这些补丁来极大地帮助。
In the review process, do not hesitate to respond to patch submissions
for remarks, suggestions or anything that will help everyone to
understand the patches and make them better. Please use internet
style replies in plain text emails when responding to patch
submissions.
在审查过程中,请毫不犹豫地回应有关备注、建议或任何有助于大家理解补丁并使其更好的补丁提交。请在回复补丁提交时使用互联网风格的纯文本电子邮件回复。
To indicate approval of a patch, there are three formal tags that keep
track of this approval. To add your tag to a patch, reply to it with the
approval tag below the original author’s Signed-off-by line. These tags
will be picked up automatically by patchwork (see
Section 22.3.1, “Applying Patches from Patchwork”) and will be part of the commit log when
the patch is accepted.
要
表示对补丁的批准,有三个正式标记可用于跟踪此批准。要将您的标记添加到补丁中,请在原作者的 Signed-off-by
行下方回复带有批准标记的内容。这些标记将被 patchwork 自动捕获(请参阅第 22.3.1 节,“从 Patchwork
应用补丁”),并在补丁被接受时成为提交日志的一部分。
If you reviewed a patch and have comments on it, you should simply reply
to the patch stating these comments, without providing a Reviewed-by or
Acked-by tag. These tags should only be provided if you judge the patch
to be good as it is.
如果您审查了一个补丁并对其有评论,您应该简单地回复补丁,说明这些评论,而不提供 Reviewed-by 或 Acked-by 标记。只有在您认为补丁很好时才应提供这些标记。
It is important to note that neither Reviewed-by nor Acked-by imply
that testing has been performed. To indicate that you both reviewed and
tested the patch, provide two separate tags (Reviewed/Acked-by and
Tested-by).
需要注意的是,Reviewed-by 和 Acked-by 都不意味着已经进行了测试。要表明您已经审查并测试了补丁,请提供两个单独的标记(Reviewed/Acked-by 和 Tested-by)。
Note also that any developer can provide Tested/Reviewed/Acked-by
tags, without exception, and we encourage everyone to do this. Buildroot
does not have a defined group of core developers, it just so happens
that some developers are more active than others. The maintainer will
value tags according to the track record of their submitter. Tags
provided by a regular contributor will naturally be trusted more than
tags provided by a newcomer. As you provide tags more regularly, your
trustworthiness (in the eyes of the maintainer) will go up, but any
tag provided is valuable.
还
要注意,任何开发人员都可以提供 Tested/Reviewed/Acked-by 标记,没有例外,并且我们鼓励每个人都这样做。Buildroot
没有一个明确定义的核心开发人员组,只是一些开发人员比其他人更活跃。维护者将根据提交者的记录价值化标记。由常规贡献者提供的标记自然会比新手提供的标
记更可信。随着您更经常提供标记,您的可信度(在维护者眼中)会提高,但提供的任何标记都是有价值的。
Buildroot’s Patchwork website can be used to pull in patches for testing
purposes. Please see Section 22.3.1, “Applying Patches from Patchwork” for more
information on using Buildroot’s Patchwork website to apply patches.
Buildroot 的 Patchwork 网站可用于拉取补丁以进行测试。有关如何使用 Buildroot 的 Patchwork 网站应用补丁的更多信息,请参阅第 22.3.1 节“从 Patchwork 应用补丁”。
The main use of Buildroot’s Patchwork website for a developer is for
pulling in patches into their local git repository for testing
purposes.
对于开发人员来说,Buildroot 的 Patchwork 网站的主要用途是将补丁拉入他们的本地 git 存储库以进行测试。
When browsing patches in the patchwork management interface, an mbox
link is provided at the top of the page. Copy this link address and
run the following commands:
在 patchwork 管理界面中浏览补丁时,页面顶部提供了一个 mbox
链接。复制此链接地址并运行以下命令:
$ git checkout -b <test-branch-name> $ wget -O - <mbox-url> | git am
Another option for applying patches is to create a bundle. A bundle is
a set of patches that you can group together using the patchwork
interface. Once the bundle is created and the bundle is made public,
you can copy the mbox
link for the bundle and apply the bundle
using the above commands.
另一种应用补丁的选项是创建一个捆绑包。捆绑包是一组补丁,您可以使用补丁工作界面将其分组在一起。一旦捆绑包被创建并且捆绑包被公开,您可以复制捆绑包的 mbox
链接,并使用上述命令应用捆绑包。
If you want to contribute to Buildroot but don’t know where to start,
and you don’t like any of the above topics, you can always work on items
from the Buildroot TODO list.
Don’t hesitate to discuss an item first on the mailing list or on IRC.
Do edit the wiki to indicate when you start working on an item, so we
avoid duplicate efforts.
如果您想为 Buildroot 做贡献但不知道从哪里开始,又不喜欢上述任何主题,您总是可以从 Buildroot 的 TODO 列表中处理项目。不要犹豫在邮件列表或 IRC 上首先讨论一个项目。请编辑维基以指示您何时开始处理一个项目,以避免重复努力。
Please, do not attach patches to bugs, send them to the mailing list
instead.
请不要将补丁附加到错误中,而是将它们发送到邮件列表。
If you made some changes to Buildroot and you would like to contribute
them to the Buildroot project, proceed as follows.
如果您对 Buildroot 进行了一些更改,并希望将它们贡献给 Buildroot 项目,请按照以下步骤进行。
We expect patches to be formatted in a specific way. This is necessary
to make it easy to review patches, to be able to apply them easily to
the git repository, to make it easy to find back in the history how
and why things have changed, and to make it possible to use git
bisect
to locate the origin of a problem.
我们期望补丁以特定方式格式化。这是为了便于审查补丁,能够轻松将其应用到 git 存储库中,便于在历史记录中找回更改的方式和原因,以及使用 git
bisect
定位问题的来源。
First of all, it is essential that the patch has a good commit
message. The commit message should start with a separate line with a
brief summary of the change, prefixed by the area touched by the
patch. A few examples of good commit titles:
首先,补丁必须有一个良好的提交消息是至关重要的。提交消息应以一个单独的行开始,其中包含更改的简要摘要,前面带有补丁触及的区域。一些良好的提交标题示例:
package/linuxptp: bump version to 2.0
configs/imx23evk: bump Linux version to 4.19
package/pkg-generic: postpone evaluation of dependency conditions
boot/uboot: needs host-{flex,bison}
support/testing: add python-ubjson tests
The description that follows the prefix should start with a lower case
letter (i.e "bump", "needs", "postpone", "add" in the above examples).
前缀后面的描述应以小写字母开头(即上述示例中的“bump”、“needs”、“postpone”、“add”)。
Second, the body of the commit message should describe why this
change is needed, and if necessary also give details about how it
was done. When writing the commit message, think of how the reviewers
will read it, but also think about how you will read it when you look
at this change again a few years down the line.
其次,提交消息的主体应描述为什么需要进行此更改,如果必要,还应提供有关如何执行此更改的详细信息。在编写提交消息时,考虑审阅者将如何阅读,但也考虑一下几年后再次查看此更改时您将如何阅读。
Third, the patch itself should do only one change, but do it
completely. Two unrelated or weakly related changes should usually be
done in two separate patches. This usually means that a patch affects
only a single package. If several changes are related, it is often
still possible to split them up in small patches and apply them in a
specific order. Small patches make it easier to review, and often
make it easier to understand afterwards why a change was done.
However, each patch must be complete. It is not allowed that the
build is broken when only the first but not the second patch is
applied. This is necessary to be able to use git bisect
afterwards.
第
三,补丁本身应仅执行一个更改,但应完全执行该更改。通常应将两个不相关或弱相关的更改分别放在两个独立的补丁中。这通常意味着一个补丁仅影响一个软件
包。如果几个更改相关,则通常仍然可以将它们拆分为小补丁并按特定顺序应用。小补丁使审查更容易,并且通常使之后更容易理解为什么进行了更改。但是,每个
补丁必须是完整的。当仅应用第一个补丁而不是第二个补丁时,不允许构建失败。这是为了能够之后使用 git bisect
。
Of course, while you’re doing your development, you’re probably going
back and forth between packages, and certainly not committing things
immediately in a way that is clean enough for submission. So most
developers rewrite the history of commits to produce a clean set of
commits that is appropriate for submission. To do this, you need to
use interactive rebasing. You can learn about it
in the Pro
Git book. Sometimes, it is even easier to discard you history with
git reset --soft origin/master
and select individual changes with
git add -i
or git add -p
.
当
然,在进行开发时,您可能会在各个软件包之间来回切换,并且肯定不会立即提交内容,以便以足够干净的方式提交。因此,大多数开发人员会重写提交历史,以生
成一组干净的提交,适合提交使用。要做到这一点,您需要使用交互式变基。您可以在《Pro
Git》书中了解有关此内容。有时,甚至更容易放弃您的历史记录,并使用 git reset --soft origin/master
选择单个更改或 git add -i
或 git add -p
。
Finally, the patch should be signed off. This is done by adding
Signed-off-by: Your Real Name <your@email.address>
at the end of the
commit message. git commit -s
does that for you, if configured
properly. The Signed-off-by
tag means that you publish the patch
under the Buildroot license (i.e. GPL-2.0+, except for package patches,
which have the upstream license), and that you are allowed to do so.
See the Developer Certificate of
Origin for details.
最后,补丁应该被签名。这是通过在提交消息的末尾添加 Signed-off-by: Your Real Name <your@email.address>
来完成的。如果配置正确, git commit -s
会为您执行此操作。 Signed-off-by
标签意味着您以 Buildroot 许可证(即 GPL-2.0+,除了软件包补丁,其具有上游许可证)发布补丁,并且您有权这样做。有关详细信息,请参阅开发者原产地证书。
To give credits to who sponsored the creation of a patch or the process of
upstreaming it, you may use
email subaddressing for
your git identity (i.e. what is used as commit author and email From:
field, as well as your Signed-off-by tag); add suffix to the local part,
separated from it by a plus +
sign. E.g.:
为了给赞助创建补丁或上游过程的人以功劳,您可以使用电子邮件子地址作为您的 git 身份(即用作提交作者和电子邮件 From:
字段,以及您的 Signed-off-by 标签);在本地部分后面添加后缀,用加号 +
分隔。例如:
for a company which sponsored the submitted work, use the company name
as the detail (suffix) part:
对于赞助提交工作的公司,请使用公司名称作为详细信息(后缀)部分:
Your-Name Your-Surname <your-name.your-surname+companyname@mail.com>
for an individual who sponsored the submitted work, use
their name and surname:
对于赞助提交工作的个人,请使用他们的名字和姓氏:
Your-Name Your-Surname <your-name.your-surname+their-name.their-surname@mail.com>
When adding new packages, you should submit every package in a
separate patch. This patch should have the update to
package/Config.in
, the package Config.in
file, the .mk
file, the
.hash
file, any init script, and all package patches. If the package
has many sub-options, these are sometimes better added as separate
follow-up patches. The summary line should be something like
<packagename>: new package
. The body of the commit message can be
empty for simple packages, or it can contain the description of the
package (like the Config.in help text). If anything special has to be
done to build the package, this should also be explained explicitly in
the commit message body.
在添加新软件包时,您应该将每个软件包提交为单独的补丁。此补丁应包含对 package/Config.in
的更新,软件包 Config.in
文件, .mk
文件, .hash
文件,任何初始化脚本以及所有软件包补丁。如果软件包有许多子选项,最好将它们作为单独的后续补丁添加。摘要行应该类似于 <packagename>: new package
。提交消息正文可以为空,用于简单软件包,或者可以包含软件包的描述(例如 Config.in 帮助文本)。如果构建软件包需要执行任何特殊操作,则还应在提交消息正文中明确说明。
When you bump a package to a new version, you should also submit a
separate patch for each package. Don’t forget to update the .hash
file, or add it if it doesn’t exist yet. Also don’t forget to check if
the _LICENSE
and _LICENSE_FILES
are still valid. The summary line
should be something like <packagename>: bump to version <new
version>
. If the new version only contains security updates compared
to the existing one, the summary should be <packagename>: security
bump to version <new version>
and the commit message body should show
the CVE numbers that are fixed. If some package patches can be removed
in the new version, it should be explained explicitly why they can be
removed, preferably with the upstream commit ID. Also any other
required changes should be explained explicitly, like configure
options that no longer exist or are no longer needed.
当您将软件包升级到新版本时,您还应为每个软件包提交单独的补丁。不要忘记更新 .hash
文件,如果尚不存在,则添加它。还要检查 _LICENSE
和 _LICENSE_FILES
是否仍然有效。摘要行应该类似于 <packagename>: bump to version <new
version>
。如果新版本仅包含与现有版本相比的安全更新,则摘要应为 <packagename>: security
bump to version <new version>
,提交消息正文应显示已修复的 CVE 编号。如果某些软件包的补丁可以在新版本中删除,应明确说明为什么可以删除,最好附带上游提交 ID。还应明确说明任何其他必需的更改,例如不再存在或不再需要的配置选项。
If you are interested in getting notified of build failures and of
further changes in the packages you added or modified, please add
yourself to the DEVELOPERS file. This should be done in the same patch
creating or modifying the package. See the DEVELOPERS file
for more information.
如果您希望在构建失败时收到通知,并了解您添加或修改的软件包的进一步更改,请将自己添加到 DEVELOPERS 文件中。这应在创建或修改软件包的相同补丁中完成。有关更多信息,请参阅 DEVELOPERS 文件。
Buildroot provides a handy tool to check for common coding style
mistakes on files you created or modified, called check-package
(see
Section 18.25.2, “How to check the coding style” for more information).
Buildroot 提供了一个方便的工具,用于检查您创建或修改的文件中常见的编码风格错误,称为 check-package
(有关更多信息,请参见第 18.25.2 节“如何检查编码风格”)。
Starting from the changes committed in your local git view, rebase
your development branch on top of the upstream tree before generating
a patch set. To do so, run:
从您本地 git 视图中提交的更改开始,在生成补丁集之前,将您的开发分支重新基于上游树。要执行此操作,请运行:
$ git fetch --all --tags $ git rebase origin/master
Now check the coding style for the changes you committed:
现在检查您提交的更改的编码风格:
$ utils/docker-run make check-package
Now, you are ready to generate then submit your patch set.
现在,您已准备好生成并提交您的补丁集。
To generate it, run: 要生成它,请运行:
$ git format-patch -M -n -s -o outgoing origin/master
This will generate patch files in the outgoing
subdirectory,
automatically adding the Signed-off-by
line.
这将在 outgoing
子目录中生成补丁文件,并自动添加 Signed-off-by
行。
Once patch files are generated, you can review/edit the commit message
before submitting them, using your favorite text editor.
生成补丁文件后,您可以使用您喜欢的文本编辑器在提交之前查看/编辑提交消息。
Buildroot provides a handy tool to know to whom your patches should be
sent, called get-developers
(see Chapter 23, DEVELOPERS file and get-developers for more
information). This tool reads your patches and outputs the appropriate
git send-email
command to use:
Buildroot 提供了一个方便的工具,用于了解应将您的补丁发送给谁,称为 get-developers
(请参阅第 23 章,DEVELOPERS 文件和 get-developers 以获取更多信息)。此工具读取您的补丁并输出适当的 git send-email
命令以使用:
$ ./utils/get-developers outgoing/*
Use the output of get-developers
to send your patches:
使用 get-developers
的输出发送您的补丁:
$ git send-email --to buildroot@buildroot.org --cc bob --cc alice outgoing/*
Alternatively, get-developers -e
can be used directly with the
--cc-cmd
argument to git send-email
to automatically CC the
affected developers:
或者,可以直接使用 get-developers -e
参数与 --cc-cmd
参数一起使用 git send-email
,以自动抄送受影响的开发人员:
$ git send-email --to buildroot@buildroot.org \ --cc-cmd './utils/get-developers -e' origin/master
git
can be configured to automatically do this out of the box with:
git
可以配置为开箱即用地自动执行此操作:
$ git config sendemail.to buildroot@buildroot.org $ git config sendemail.ccCmd "$(pwd)/utils/get-developers -e"
And then just do: 然后只需执行:
$ git send-email origin/master
Note that git
should be configured to use your mail account.
To configure git
, see man git-send-email
or https://git-send-email.io/.
请注意, git
应配置为使用您的邮件帐户。要配置 git
,请参阅 man git-send-email
或 https://git-send-email.io/。
If you do not use git send-email
, make sure posted patches are not
line-wrapped, otherwise they cannot easily be applied. In such a case,
fix your e-mail client, or better yet, learn to use git send-email
.
如果您不使用 git send-email
,请确保发布的补丁未换行,否则无法轻松应用。在这种情况下,请修复您的电子邮件客户端,或者更好地学习如何使用 git send-email
。
https://sr.ht also has a light-weight UI for
preparing patchseries
and can also send out the patches for you. There are a few drawbacks to
this, as you cannot edit your patches' status in Patchwork and you
currently can’t edit your display name with which the match emails are
sent out but it is an option if you cannot get git send-email to work
with your mail provider (i.e. O365); it shall not be considered the
official way of sending patches, but just a fallback.
https://
sr.ht 还具有一个轻量级的用户界面,用于准备补丁系列,并可以为您发送补丁。这种方法有一些缺点,例如您无法在 Patchwork
中编辑您的补丁状态,目前也无法编辑发送匹配电子邮件的显示名称,但如果您无法使 git send-email 与您的邮件提供商(即
O365)配合工作,则可以选择此选项;这不应被视为发送补丁的官方方式,而只是一种备用方法。
If you want to present the whole patch set in a separate mail, add
--cover-letter
to the git format-patch
command (see man
git-format-patch
for further information). This will generate a
template for an introduction e-mail to your patch series.
如果您想在单独的邮件中展示整个补丁集,请在 git format-patch
命令中添加 --cover-letter
(有关详细信息,请参见 man
git-format-patch
)。这将为您的补丁系列生成一封介绍电子邮件的模板。
A cover letter may be useful to introduce the changes you propose
in the following cases:
在以下情况下,封面信可能有助于介绍您提出的更改:
When fixing bugs on a maintenance branch, bugs should be fixed on the
master branch first. The commit log for such a patch may then contain a
post-commit note specifying what branches are affected:
在维护分支上修复错误时,应首先在主分支上修复错误。此类补丁的提交日志可能包含一个后提交说明,指定受影响的分支。
package/foo: fix stuff Signed-off-by: Your Real Name <your@email.address> --- Backport to: 2020.02.x, 2020.05.x (2020.08.x not affected as the version was bumped)
Those changes will then be backported by a maintainer to the affected
branches.
这些更改将由维护者回溯到受影响的分支。
However, some bugs may apply only to a specific release, for example
because it is using an older version of a package. In that case, patches
should be based off the maintenance branch, and the patch subject prefix
must include the maintenance branch name (for example "[PATCH 2020.02.x]").
This can be done with the git format-patch
flag --subject-prefix
:
然而,一些错误可能仅适用于特定版本,例如因为它正在使用较旧版本的软件包。在这种情况下,补丁应基于维护分支,并且补丁主题前缀必须包含维护分支名称(例如“[PATCH 2020.02.x]”)。这可以通过 git format-patch
标志 --subject-prefix
完成:
$ git format-patch --subject-prefix "PATCH 2020.02.x" \ -M -s -o outgoing origin/2020.02.x
Then send the patches with git send-email
, as described above.
然后按照上述描述使用 git send-email
发送补丁。
When improvements are requested, the new revision of each commit
should include a changelog of the modifications between each
submission. Note that when your patch series is introduced by a cover
letter, an overall changelog may be added to the cover letter in
addition to the changelog in the individual commits.
The best thing to rework a patch series is by interactive rebasing:
git rebase -i origin/master
. Consult the git manual for more
information.
当需要改进时,每个提交的新修订版本应包括每次提交之间的修改日志。请注意,当您的补丁系列由一封附加信介绍时,除了各个提交的日志外,还可以在附加信中添加总体变更日志。重新处理补丁系列的最佳方法是通过交互式变基: git rebase -i origin/master
。请参考 git 手册获取更多信息。
When added to the individual commits, this changelog is added when
editing the commit message. Below the Signed-off-by
section, add
---
and your changelog.
将此变更日志添加到各个提交时,可在编辑提交消息时添加此变更日志。在 Signed-off-by
部分下方,添加 ---
和您的变更日志。
Although the changelog will be visible for the reviewers in the mail
thread, as well as in
patchwork, git
will automatically ignores lines below ---
when the patch will be
merged. This is the intended behavior: the changelog is not meant to
be preserved forever in the git
history of the project.
尽管变更日志将在邮件线程中对审阅者可见,以及在 patchwork 中,当补丁合并时, git
将自动忽略 ---
以下的行。这是预期的行为:变更日志不应永远保留在项目的 git
历史记录中。
Hereafter the recommended layout:
以下是推荐的布局:
Patch title: short explanation, max 72 chars A paragraph that explains the problem, and how it manifests itself. If the problem is complex, it is OK to add more paragraphs. All paragraphs should be wrapped at 72 characters. A paragraph that explains the root cause of the problem. Again, more than one paragraph is OK. Finally, one or more paragraphs that explain how the problem is solved. Don't hesitate to explain complex solutions in detail. Signed-off-by: John DOE <john.doe@example.net> --- Changes v2 -> v3: - foo bar (suggested by Jane) - bar buz Changes v1 -> v2: - alpha bravo (suggested by John) - charly delta
Any patch revision should include the version number. The version number
is simply composed of the letter v
followed by an integer
greater or
equal to two (i.e. "PATCH v2", "PATCH v3" …).
任何补丁修订版都应包括版本号。版本号简单地由字母 v
后跟大于或等于两个的 integer
组成(即“PATCH v2”,“PATCH v3”…)。
This can be easily handled with git format-patch
by using the option
--subject-prefix
:
使用选项 --subject-prefix
,可以很容易地通过 git format-patch
处理:
$ git format-patch --subject-prefix "PATCH v4" \ -M -s -o outgoing origin/master
Since git version 1.8.1, you can also use -v <n>
(where <n> is the
version number):
自 git 版本 1.8.1 起,您还可以使用 -v <n>
(其中 是版本号):
$ git format-patch -v4 -M -s -o outgoing origin/master
When you provide a new version of a patch, please mark the old one as
superseded in
patchwork. You
need to create an account on
patchwork to be
able to modify the status of your patches. Note that you can only change
the status of patches you submitted yourself, which means the email
address you register in
patchwork should
match the one you use for sending patches to the mailing list.
当
您提供一个补丁的新版本时,请在 patchwork 中将旧版本标记为已废弃。您需要在 patchwork
上创建一个帐户,以便能够修改您的补丁的状态。请注意,您只能更改您自己提交的补丁的状态,这意味着您在 patchwork
中注册的电子邮件地址应与您用于向邮件列表发送补丁的地址匹配。
You can also add the --in-reply-to <message-id>
option when
submitting a patch to the mailing list. The id of the mail to reply to
can be found under the "Message Id" tag on
patchwork. The
advantage of in-reply-to is that patchwork will automatically mark
the previous version of the patch as superseded.
在将补丁提交到邮件列表时,您还可以添加 --in-reply-to <message-id>
选项。要回复的邮件的 ID 可以在 patchwork 的“消息 ID”标签下找到。in-reply-to 的优点是,patchwork 将自动将补丁的先前版本标记为已取代。
Before reporting any issue, please check in
the mailing list archive whether someone has
already reported and/or fixed a similar problem.
在报告任何问题之前,请在邮件列表存档中检查是否已经有人报告和/或修复了类似的问题。
However you choose to report bugs or get help, either by
opening a bug in the bug tracker or by
sending a mail to the mailing list, there are
a number of details to provide in order to help people reproduce and
find a solution to the issue.
无论您选择如何报告错误或寻求帮助,无论是通过在错误跟踪器中打开错误还是通过发送电子邮件到邮件列表,都需要提供一些详细信息,以帮助他人重现并找到问题的解决方案。
Try to think as if you were trying to help someone else; in
that case, what would you need?
尽量想象自己在帮助别人;在那种情况下,您会需要什么?
Here is a short list of details to provide in such case:
以下是在这种情况下需要提供的简要详细信息列表:
Additionally, you should add the .config
file (or if you know how, a
defconfig
; see Section 9.3, “Storing the Buildroot configuration”).
另外,您应该添加 .config
文件(或者如果您知道如何,一个 defconfig
;请参阅第 9.3 节“存储 Buildroot 配置”)。
If some of these details are too large, do not hesitate to use a
pastebin service. Note that not all available pastebin services will
preserve Unix-style line terminators when downloading raw pastes.
Following pastebin services are known to work correctly:
- https://gist.github.com/
- http://code.bulix.org/
如
果这些细节中有些太大,请不要犹豫使用 pastebin 服务。请注意,并非所有可用的 pastebin 服务在下载原始粘贴时都会保留 Unix
风格的行终止符。以下 pastebin 服务已知可以正常工作:- https://gist.github.com/ -
http://code.bulix.org/
Buildroot includes a run-time testing framework built upon Python
scripting and QEMU runtime execution. The goals of the framework are
the following:
Buildroot 包含一个基于 Python 脚本和 QEMU 运行时执行构建的运行时测试框架。该框架的目标如下:
The entry point to use the runtime tests framework is the
support/testing/run-tests
tool, which has a series of options
documented in the tool’s help -h description. Some common options
include setting the download folder, the output folder, keeping build
output, and for multiple test cases, you can set the JLEVEL for each.
使用运行时测试框架的入口点是 support/testing/run-tests
工具,该工具有一系列选项在工具的帮助-h 描述中有文档记录。一些常见选项包括设置下载文件夹、输出文件夹、保留构建输出,对于多个测试用例,您可以为每个设置 JLEVEL。
Here is an example walk through of running a test case.
这是运行测试用例的示例演练。
support/testing/run-tests -l
. These tests
can all be run individually during test development from the console. Both
one at a time and selectively as a group of a subset of tests.
support/testing/run-tests -l
列出测试用例。在测试开发过程中,可以从控制台逐个运行这些测试。也可以逐个运行或选择性地作为一组测试的子集。$ support/testing/run-tests -l List of tests test_run (tests.utils.test_check_package.TestCheckPackage) test_run (tests.toolchain.test_external.TestExternalToolchainBuildrootMusl) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainBuildrootuClibc) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainCCache) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainCtngMusl) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainLinaroArm) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainSourceryArmv4) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainSourceryArmv5) ... ok test_run (tests.toolchain.test_external.TestExternalToolchainSourceryArmv7) ... ok [snip] test_run (tests.init.test_systemd.TestInitSystemSystemdRoFull) ... ok test_run (tests.init.test_systemd.TestInitSystemSystemdRoIfupdown) ... ok test_run (tests.init.test_systemd.TestInitSystemSystemdRoNetworkd) ... ok test_run (tests.init.test_systemd.TestInitSystemSystemdRwFull) ... ok test_run (tests.init.test_systemd.TestInitSystemSystemdRwIfupdown) ... ok test_run (tests.init.test_systemd.TestInitSystemSystemdRwNetworkd) ... ok test_run (tests.init.test_busybox.TestInitSystemBusyboxRo) ... ok test_run (tests.init.test_busybox.TestInitSystemBusyboxRoNet) ... ok test_run (tests.init.test_busybox.TestInitSystemBusyboxRw) ... ok test_run (tests.init.test_busybox.TestInitSystemBusyboxRwNet) ... ok Ran 157 tests in 0.021s OK
$ support/testing/run-tests -d dl -o output_folder -k tests.init.test_busybox.TestInitSystemBusyboxRw 15:03:26 TestInitSystemBusyboxRw Starting 15:03:28 TestInitSystemBusyboxRw Building 15:08:18 TestInitSystemBusyboxRw Building done 15:08:27 TestInitSystemBusyboxRw Cleaning up . Ran 1 test in 301.140s OK
The standard output indicates if the test is successful or not. By
default, the output folder for the test is deleted automatically
unless the option -k
is passed to keep the output directory.
标准输出指示测试是否成功。默认情况下,测试的输出文件夹会被自动删除,除非传递选项 -k
以保留输出目录。
Within the Buildroot repository, the testing framework is organized at the
top level in support/testing/
by folders of conf
, infra
and tests
.
All the test cases live under the tests
folder and are organized in various
folders representing the category of test.
在 Buildroot 存储库中,测试框架在顶层通过 support/testing/
、 conf
和 infra
文件夹进行组织。所有测试用例都位于 tests
文件夹下,并以表示测试类别的各种文件夹进行组织。
The best way to get familiar with how to create a test case is to look
at a few of the basic file system support/testing/tests/fs/
and init
support/testing/tests/init/
test scripts. Those tests give good
examples of a basic tests that include both checking the build
results, and doing runtime tests. There are other more advanced cases
that use things like nested br2-external
folders to provide
skeletons and additional packages.
熟悉如何创建测试用例的最佳方法是查看一些基本文件系统 support/testing/tests/fs/
和 init support/testing/tests/init/
测试脚本。这些测试提供了基本测试的良好示例,包括检查构建结果和进行运行时测试。还有其他更高级的情况,使用嵌套 br2-external
文件夹等内容来提供框架和额外的软件包。
Creating a basic test case involves:
创建基本测试用例涉及:
infra.basetest.BRTest
infra.basetest.BRTest
config
member of the test class, to the Buildroot
configuration to build for this test case. It can optionally rely on
configuration snippets provided by the runtime test infrastructure:
infra.basetest.BASIC_TOOLCHAIN_CONFIG
to get a basic
architecture/toolchain configuration, and
infra.basetest.MINIMAL_CONFIG
to not build any filesystem. The
advantage of using infra.basetest.BASIC_TOOLCHAIN_CONFIG
is that a
matching Linux kernel image is provided, which allows to boot the
resulting image in Qemu without having to build a Linux kernel image
as part of the test case, therefore significant decreasing the build
time required for the test case.
config
成员,以构建此测试用例的 Buildroot 配置。它可以选择依赖运行时测试基础设施提供的配置片段: infra.basetest.BASIC_TOOLCHAIN_CONFIG
以获取基本的架构/工具链配置, infra.basetest.MINIMAL_CONFIG
以不构建任何文件系统。使用 infra.basetest.BASIC_TOOLCHAIN_CONFIG
的优势在于提供了匹配的 Linux 内核映像,这允许在 Qemu 中引导生成的映像,而无需构建 Linux 内核映像作为测试用例的一部分,因此显著减少了测试用例所需的构建时间。def test_run(self):
function to implement the
actual tests to run after the build has completed. They may be tests
that verify the build output, by running command on the host using
the run_cmd_on_host()
helper function. Or they may boot the
generated system in Qemu using the Emulator
object available as
self.emulator
in the test case. For example self.emulator.boot()
allows to boot the system in Qemu, self.emulator.login()
allows to
login, self.emulator.run()
allows to run shell commands inside
Qemu.
def test_run(self):
函数来实现在构建完成后运行的实际测试。它们可以是验证构建输出的测试,通过在主机上使用 run_cmd_on_host()
辅助函数运行命令来进行。或者它们可以使用测试用例中作为 self.emulator
可用的 Emulator
对象在 Qemu 中引导生成的系统。例如 self.emulator.boot()
允许在 Qemu 中引导系统, self.emulator.login()
允许登录, self.emulator.run()
允许在 Qemu 中运行 shell 命令。After creating the test script, add yourself to the DEVELOPERS
file to
be the maintainer of that test case.
创建测试脚本后,将自己添加到 DEVELOPERS
文件中,成为该测试用例的维护者。
When a test case runs, the output_folder
will contain the following:
当测试用例运行时, output_folder
将包含以下内容:
$ ls output_folder/ TestInitSystemBusyboxRw/ TestInitSystemBusyboxRw-build.log TestInitSystemBusyboxRw-run.log
TestInitSystemBusyboxRw/
is the Buildroot output directory, and it
is preserved only if the -k
option is passed.
TestInitSystemBusyboxRw/
是 Buildroot 输出目录,仅在传递 -k
选项时保留。
TestInitSystemBusyboxRw-build.log
is the log of the Buildroot build.
TestInitSystemBusyboxRw-build.log
是 Buildroot 构建的日志。
TestInitSystemBusyboxRw-run.log
is the log of the Qemu boot and
test. This file will only exist if the build was successful and the
test case involves booting under Qemu.
TestInitSystemBusyboxRw-run.log
是 Qemu 引导和测试的日志。仅当构建成功且测试案例涉及在 Qemu 下引导时,此文件才会存在。
If you want to manually run Qemu to do manual tests of the build
result, the first few lines of TestInitSystemBusyboxRw-run.log
contain the Qemu command line to use.
如果您想手动运行 Qemu 来对构建结果进行手动测试, TestInitSystemBusyboxRw-run.log
的前几行包含要使用的 Qemu 命令行。
You can also make modifications to the current sources inside the
output_folder
(e.g. for debug purposes) and rerun the standard
Buildroot make targets (in order to regenerate the complete image with
the new modifications) and then rerun the test.
您还可以在 output_folder
中对当前源代码进行修改(例如,用于调试目的),然后重新运行标准 Buildroot 构建目标(以便使用新的修改重新生成完整的镜像),然后重新运行测试。
All runtime tests are regularly executed by Buildroot Gitlab CI
infrastructure, see .gitlab.yml and
https://gitlab.com/buildroot.org/buildroot/-/jobs.
所有运行时测试都定期由 Buildroot Gitlab CI 基础设施执行,请参阅.gitlab.yml 和 https://gitlab.com/buildroot.org/buildroot/-/jobs。
You can also use Gitlab CI to test your new test cases, or verify that
existing tests continue to work after making changes in Buildroot.
您还可以使用 Gitlab CI 来测试您的新测试用例,或在 Buildroot 中进行更改后验证现有测试是否继续工作。
In order to achieve this, you need to create a fork of the Buildroot
project on Gitlab, and be able to push branches to your Buildroot fork
on Gitlab.
为了实现这一点,您需要在 Gitlab 上创建 Buildroot 项目的分支,并能够将分支推送到 Gitlab 上的 Buildroot 分支。
The name of the branch that you push will determine if a Gitlab CI
pipeline will be triggered or not, and for which test cases.
推送的分支名称将决定是否触发 Gitlab CI 流水线,以及触发哪些测试用例。
In the examples below, the <name> component of the branch name is an
arbitrary string you choose.
在下面的示例中,分支名称的 <name> 部分是您选择的任意字符串。
-runtime-tests
:
-runtime-tests
结尾的分支。$ git push gitlab HEAD:<name>-runtime-tests
tests.init.test_busybox.TestInitSystemBusyboxRo
) or with the name
of a category of tests (tests.init.test_busybox
):
tests.init.test_busybox.TestInitSystemBusyboxRo
)或测试类别名称( tests.init.test_busybox
)结尾的分支:$ git push gitlab HEAD:<name>-<test case name>
Example to run one test:
运行一个测试的示例:
$ git push gitlab HEAD:foo-tests.init.test_busybox.TestInitSystemBusyboxRo
Examples to run several tests part of the same group:
运行同一组中的多个测试的示例:
$ git push gitlab HEAD:foo-tests.init.test_busybox $ git push gitlab HEAD:foo-tests.init
The main Buildroot directory contains a file named DEVELOPERS
that
lists the developers involved with various areas of Buildroot. Thanks
to this file, the get-developers
tool allows to:
主 Buildroot 目录包含一个名为 DEVELOPERS
的文件,列出了涉及 Buildroot 各个领域的开发人员。由于这个文件, get-developers
工具可以:
We ask developers adding new packages, new boards, or generally new
functionality in Buildroot, to register themselves in the DEVELOPERS
file. As an example, we expect a developer contributing a new package
to include in his patch the appropriate modification to the
DEVELOPERS
file.
我们要求向 Buildroot 中添加新软件包、新板或通常新功能的开发人员在 DEVELOPERS
文件中注册自己。例如,我们期望开发人员在贡献新软件包时,在其补丁中包含对 DEVELOPERS
文件的适当修改。
The DEVELOPERS
file format is documented in detail inside the file
itself.
DEVELOPERS
文件格式在文件本身内详细记录。
The get-developers
tool, located in utils/
allows to use
the DEVELOPERS
file for various tasks:
位于 utils/
的 get-developers
工具允许使用 DEVELOPERS
文件执行各种任务:
get-developers
will return the appropriate git send-email
command. If the -e
option is passed, only the email addresses are
printed in a format suitable for git send-email --cc-cmd
.
get-developers
将返回适当的 git send-email
命令。如果传递了 -e
选项,则仅以适合 git send-email --cc-cmd
的格式打印电子邮件地址。-a <arch>
command line option, get-developers
will
return the list of developers in charge of the given architecture.
-a <arch>
命令行选项时, get-developers
将返回负责给定架构的开发人员列表。-p <package>
command line option, get-developers
will return the list of developers in charge of the given package.
-p <package>
命令行选项时, get-developers
将返回负责给定软件包的开发人员列表。-c
command line option, get-developers
will look
at all files under version control in the Buildroot repository, and
list the ones that are not handled by any developer. The purpose of
this option is to help completing the DEVELOPERS
file.
-c
命令行选项时, get-developers
将查看 Buildroot 存储库中版本控制下的所有文件,并列出未由任何开发人员处理的文件。此选项的目的是帮助完成 DEVELOPERS
文件。-v
command line option, it validates the integrity
of the DEVELOPERS file and will note WARNINGS for items that don’t
match.
-v
命令行选项时,它会验证 DEVELOPERS 文件的完整性,并对不匹配的项目进行警告。The Buildroot project makes quarterly releases with monthly bugfix
releases. The first release of each year is a long term support
release, LTS.
Buildroot 项目每季度发布一次,每月发布修复错误。每年的第一个发布版本是长期支持版本,LTS。
Releases are supported until the first bugfix release of the next
release, e.g., 2020.05.x is EOL when 2020.08.1 is released.
版本将受支持,直到下一个版本的第一个错误修复版本发布,例如,2020.05.x 在 2020.08.1 发布时到期。
LTS releases are supported until the first bugfix release of the next
LTS, e.g., 2020.02.x is supported until 2021.02.1 is released.
LTS 版本将受支持,直到下一个 LTS 的第一个错误修复版本发布,例如,2020.02.x 将在 2021.02.1 发布时受支持。
Each release cycle consist of two months of development on the master
branch and one month stabilization before the release is made. During
this phase no new features are added to master
, only bugfixes.
每个发布周期包括在 master
分支上进行两个月的开发,然后在发布之前进行一个月的稳定。在此阶段,不会向 master
添加新功能,只会修复错误。
The stabilization phase starts with tagging -rc1
, and every week until
the release, another release candidate is tagged.
稳定阶段从标记 -rc1
开始,直到发布之前的每周都会标记另一个发布候选版本。
To handle new features and version bumps during the stabilization phase,
a next
branch may be created for these features. Once the current
release has been made, the next
branch is merged into master
and
the development cycle for the next release continues there.
在稳定阶段处理新功能和版本升级时,可以为这些功能创建一个 next
分支。一旦当前版本发布完成, next
分支将合并到 master
,下一个版本的开发周期将在那里继续。
The makedev syntax is used in several places in Buildroot to
define changes to be made for permissions, or which device files to
create and how to create them, in order to avoid calls to mknod.
makedev 语法在 Buildroot 中的几个地方用于定义权限更改或要创建的设备文件以及如何创建它们,以避免调用 mknod。
This syntax is derived from the makedev utility, and more complete
documentation can be found in the package/makedevs/README
file.
此语法源自 makedev 实用程序,更完整的文档可以在 package/makedevs/README
文件中找到。
It takes the form of a space separated list of fields, one file per
line; the fields are:
它采取了一种以空格分隔的字段列表形式,每行一个文件;字段包括:
name | type | mode | uid | gid | major | minor | start | inc | count |
There are a few non-trivial blocks:
有一些非平凡的块:
name
is the path to the file you want to create/modify
name
是您要创建/修改的文件的路径
type
is the type of the file, being one of:
type
是文件的类型之一,可以是以下之一:
f
: a regular file, which must already exist
f
:普通文件,必须已经存在F
: a regular file, which is ignored and not created if missing
F
:普通文件,如果缺失则被忽略且不会创建d
: a directory, which is created, as well as its parents, if missing
d
:一个目录,如果缺失则创建它及其父目录r
: a directory recursively, which must already exist
r
:递归创建一个目录,该目录必须已经存在c
: a character device file, which parent directory must exist
c
:一个字符设备文件,其父目录必须存在b
: a block device file, which parent directory must exist
b
:一个块设备文件,其父目录必须存在p
: a named pipe, which parent directory must exist
p
:一个命名管道,其父目录必须存在mode
are the usual permissions settings (only numerical values
are allowed);
for type d
, the mode of existing parents is not changed, but the mode
of created parents is set;
for types f
, F
, and r
, mode
can also be set to -1
to not
change the mode (and only change uid and gid)
mode
是通常的权限设置(只允许使用数字值);对于类型 d
,现有父目录的模式不会改变,但创建的父目录的模式会被设置;对于类型 f
, F
和 r
, mode
也可以设置为 -1
以不改变模式(仅更改 uid 和 gid)uid
and gid
are the UID and GID to set on this file; can be
either numerical values or actual names
uid
和 gid
是要设置在此文件上的 UID 和 GID;可以是数字值,也可以是实际名称major
and minor
are here for device files, set to -
for other
files
major
和 minor
是用于设备文件的,对于其他文件设置为 -
start
, inc
and count
are for when you want to create a batch
of files, and can be reduced to a loop, beginning at start
,
incrementing its counter by inc
until it reaches count
start
、 inc
和 count
可以简化为循环,从 start
开始,递增计数器 inc
直到达到 count
时
Let’s say you want to change the ownership and permissions of a given
file; using this syntax, you will need to write:
假设您想要更改给定文件的所有权和权限;使用此语法,您需要编写:
/usr/bin/foo f 755 0 0 - - - - - /usr/bin/bar f 755 root root - - - - - /data/buz f 644 buz-user buz-group - - - - - /data/baz f -1 baz-user baz-group - - - - -
Alternatively, if you want to change owner of a directory recursively,
you can write (to set UID to foo
and GID to bar
for the directory
/usr/share/myapp
and all files and directories below it):
或者,如果您想要递归更改目录的所有者,您可以编写(为目录 /usr/share/myapp
及其下所有文件和目录设置 UID 为 foo
和 GID 为 bar
):
/usr/share/myapp r -1 foo bar - - - - -
On the other hand, if you want to create the device file /dev/hda
and the corresponding 15 files for the partitions, you will need for
/dev/hda
:
另一方面,如果您想要创建设备文件 /dev/hda
和相应的 15 个分区文件,您需要为 /dev/hda
:
/dev/hda b 640 root root 3 0 0 0 -
and then for device files corresponding to the partitions of
/dev/hda
, /dev/hdaX
, X
ranging from 1 to 15:
然后对应于 /dev/hda
, /dev/hdaX
, X
的设备文件,范围从 1 到 15:
/dev/hda b 640 root root 3 1 1 1 15
Extended attributes are supported if
BR2_ROOTFS_DEVICE_TABLE_SUPPORTS_EXTENDED_ATTRIBUTES
is enabled.
This is done by adding a line starting with |xattr
after
the line describing the file. Right now, only capability
is supported as extended attribute.
如果启用 BR2_ROOTFS_DEVICE_TABLE_SUPPORTS_EXTENDED_ATTRIBUTES
,则支持扩展属性。方法是在描述文件的行后添加以 |xattr
开头的行。目前,只支持作为扩展属性的功能。
|xattr | capability |
|xattr
is a "flag" that indicate an extended attribute
|xattr
是指示扩展属性的“标志”capability
is a capability to add to the previous file
capability
是添加到先前文件的功能If you want to add the capability cap_sys_admin to the binary foo,
you will write :
如果您想将能力 cap_sys_admin 添加到二进制文件 foo,您将编写:
/usr/bin/foo f 755 root root - - - - - |xattr cap_sys_admin+eip
You can add several capabilities to a file by using several |xattr
lines.
If you want to add the capability cap_sys_admin and cap_net_admin to the
binary foo, you will write :
通过使用多个 |xattr
行,您可以向文件添加多个功能。如果您想要将功能 cap_sys_admin 和 cap_net_admin 添加到二进制文件 foo 中,您将编写:
/usr/bin/foo f 755 root root - - - - - |xattr cap_sys_admin+eip |xattr cap_net_admin+eip
The syntax to create users is inspired by the makedev syntax, above, but
is specific to Buildroot.
创建用户的语法受到上面 makedev 语法的启发,但是特定于 Buildroot。
The syntax for adding a user is a space-separated list of fields, one
user per line; the fields are:
添加用户的语法是一个以空格分隔的字段列表,每行一个用户;字段包括:
username | uid | group | gid | password | home | shell | groups | comment |
Where: 其中:
username
is the desired user name (aka login name) for the user.
It can not be root
, and must be unique. If set to -
, then just a
group will be created.
username
是用户的期望用户名(也称为登录名)。它不能是 root
,必须是唯一的。如果设置为 -
,那么只会创建一个组。uid
is the desired UID for the user. It must be unique, and not
0
. If set to -1
or -2
, then a unique UID will be computed by
Buildroot, with -1
denoting a system UID from [100…999] and -2
denoting a user UID from [1000…1999].
uid
是用户的期望 UID。它必须是唯一的,而且不能是 0
。如果设置为 -1
或 -2
,那么 Buildroot 将计算一个唯一的 UID,其中 -1
表示系统 UID 范围为 [100…999], -2
表示用户 UID 范围为 [1000…1999]。group
is the desired name for the user’s main group. It can not
be root
. If the group does not exist, it will be created.
group
是用户主组的期望名称。它不能是 root
。如果该组不存在,它将被创建。gid
is the desired GID for the user’s main group. It must be unique,
and not 0
. If set to -1
or -2
, and the group does not already
exist, then a unique GID will be computed by Buildroot, with -1
denoting a system GID from [100…999] and -2
denoting a user GID
from [1000…1999].
gid
是用户主组的期望 GID。它必须是唯一的,而且不能是 0
。如果设置为 -1
或 -2
,并且该组尚不存在,则 Buildroot 将计算一个唯一的 GID,其中 -1
表示系统 GID 范围为 [100…999], -2
表示用户 GID 范围为 [1000…1999]。password
is the crypt(3)-encoded password. If prefixed with !
,
then login is disabled. If prefixed with =
, then it is interpreted
as clear-text, and will be crypt-encoded (using MD5). If prefixed with
!=
, then the password will be crypt-encoded (using MD5) and login
will be disabled. If set to *
, then login is not allowed. If set to
-
, then no password value will be set.
password
是 crypt(3) 编码的密码。如果前缀为 !
,则登录被禁用。如果前缀为 =
,则被解释为明文,并将被 crypt 编码(使用 MD5)。如果前缀为 !=
,则密码将被 crypt 编码(使用 MD5)并且登录被禁用。如果设置为 *
,则不允许登录。如果设置为 -
,则不设置密码值。home
is the desired home directory for the user. If set to -, no
home directory will be created, and the user’s home will be /
.
Explicitly setting home
to /
is not allowed.
home
是用户的期望主目录。如果设置为 -,则不会创建主目录,用户的主目录将是 /
。明确将 home
设置为 /
是不允许的。shell
is the desired shell for the user. If set to -
, then
/bin/false
is set as the user’s shell.
shell
是用户的期望 shell。如果设置为 -
,则 /bin/false
被设置为用户的 shell。groups
is the comma-separated list of additional groups the user
should be part of. If set to -
, then the user will be a member of
no additional group. Missing groups will be created with an arbitrary
gid
.
groups
是用户应该加入的附加组的逗号分隔列表。如果设置为 -
,那么用户将不是任何附加组的成员。缺少的组将使用任意 gid
创建。comment
(aka GECOS
field) is an almost-free-form text.
comment
(又名 GECOS 字段)是几乎自由格式的文本。There are a few restrictions on the content of each field:
每个字段的内容有一些限制:
comment
, all fields are mandatory.
comment
外,所有字段都是必填的。comment
, fields may not contain spaces.
comment
外,字段不能包含空格。:
).
:
)。If home
is not -
, then the home directory, and all files below,
will belong to the user and its main group.
如果 home
不是 -
,那么主目录和其下所有文件将属于该用户及其主要组。
Examples: 例子:
foo -1 bar -1 !=blabla /home/foo /bin/sh alpha,bravo Foo user
This will create this user:
这将创建此用户:
username
(aka login name) is: foo
username
(又名登录名)是: foo
uid
is computed by Buildroot
uid
由 Buildroot 计算group
is: bar
group
是: bar
gid
is computed by Buildroot
gid
是由 Buildroot 计算的password
is: blabla
, will be crypt(3)-encoded, and login is disabled.
password
是: blabla
,将被 crypt(3) 编码,并且登录被禁用。home
is: /home/foo
home
是: /home/foo
shell
is: /bin/sh
shell
是: /bin/sh
foo
is also a member of groups
: alpha
and bravo
foo
也是 groups
的成员: alpha
和 bravo
comment
is: Foo user
comment
是: Foo user
test 8000 wheel -1 = - /bin/sh - Test user
This will create this user:
这将创建此用户:
username
(aka login name) is: test
username
(又名登录名)是: test
uid
is : 8000
uid
是: 8000
group
is: wheel
group
是: wheel
gid
is computed by Buildroot, and will use the value defined in the rootfs skeleton
gid
由 Buildroot 计算,并将使用在 rootfs 骨架中定义的值password
is empty (aka no password).
password
为空(也就是没有密码)。home
is /
but will not belong to test
home
是 /
但不会属于 test
shell
is: /bin/sh
shell
是: /bin/sh
test
is not a member of any additional groups
test
不是任何其他 groups
的成员
comment
is: Test user
comment
是: Test user
When updating buildroot or when packages are added or removed to/from
the configuration, it is possible that the automatic UIDs and GIDs are
changed. This can be a problem if persistent files were created with
that user or group: after upgrade, they will suddenly have a different
owner.
当更新 buildroot 或者向配置中添加或删除软件包时,可能会更改自动 UID 和 GID。如果使用该用户或组创建了持久文件,这可能会成为一个问题:升级后,它们将突然拥有不同的所有者。
Therefore, it is advisable to perpetuate the automatic IDs. This can be
done by adding a users table with the generated IDs. It is only needed
to do this for UIDs that actually create persistent files, e.g. database.
因此,建议保留自动生成的 ID。可以通过添加一个带有生成的 ID 的用户表来实现。只需要为实际创建持久文件的 UID 执行此操作,例如数据库。
Some versions have introduced backward incompatibilities. This section
explains those incompatibilities, and for each explains what to do to
complete the migration.
一些版本引入了向后不兼容性。本节解释了这些不兼容性,并针对每个不兼容性解释了完成迁移的操作。
To migrate from an older Buildroot version, take the following steps.
要从旧的 Buildroot 版本迁移,请执行以下步骤。
make graph-size
. Save
graphs/file-size-stats.csv
in a different location. Run make
clean
to remove the rest.
make graph-size
。将 graphs/file-size-stats.csv
保存在不同的位置。运行 make
clean
来移除其余部分。make menuconfig
starting from the existing .config
.
.config
开始运行 make menuconfig
。packages
directory and run
git log <old version>.. — <your packages>
.
packages
目录并运行 git log <old version>.. — <your packages>
。make graph-size
.
make graph-size
。file-size-stats.csv
with the original one, to
check if no required files have disappeared and if no new big unneeded
files have appeared.
file-size-stats.csv
与原始文件进行比较,以检查是否没有必需文件消失,以及是否出现了新的不必要的大文件。Before Buildroot 2016.11, it was possible to use only one br2-external
tree at once. With Buildroot 2016.11 came the possibility to use more
than one simultaneously (for details, see Section 9.2, “Keeping customizations outside of Buildroot”).
在
Buildroot 2016.11 之前,一次只能使用一个 br2-external 树是可能的。随着 Buildroot 2016.11
的到来,同时使用多个的可能性也出现了(有关详细信息,请参见第 9.2 节“将自定义内容保留在 Buildroot 之外”)。
This however means that older br2-external trees are not usable as-is.
A minor change has to be made: adding a name to your br2-external tree.
然而,这意味着旧的 br2-external 树不能直接使用。必须进行一些微小的更改:向您的 br2-external 树添加一个名称。
This can be done very easily in just a few steps:
这可以很容易地在几个步骤中完成:
First, create a new file named external.desc
, at the root of your
br2-external tree, with a single line defining the name of your
br2-external tree:
首先,在您的 br2-external 树的根目录创建一个名为 external.desc
的新文件,并在其中添加一行,定义您的 br2-external 树的名称:
$ echo 'name: NAME_OF_YOUR_TREE' >external.desc
Note. Be careful when choosing a name: It has to be unique and be made
with only ASCII characters from the set [A-Za-z0-9_]
.
注意。选择名称时要小心:它必须是唯一的,并且只能使用来自集合 [A-Za-z0-9_]
的 ASCII 字符。
Then, change every occurence of BR2_EXTERNAL
in your br2-external
tree with the new variable:
然后,在您的 br2-external 树中更改每个 BR2_EXTERNAL
的出现为新变量:
$ find . -type f | xargs sed -i 's/BR2_EXTERNAL/BR2_EXTERNAL_NAME_OF_YOUR_TREE_PATH/g'
Now, your br2-external tree can be used with Buildroot 2016.11 onward.
现在,您的 br2-external 树可以与 Buildroot 2016.11 及更高版本一起使用。
Note: This change makes your br2-external tree incompatible with Buildroot
before 2016.11.
注意:此更改使您的 br2-external 树与 2016.11 之前的 Buildroot 不兼容。
Before Buildroot 2017.08, host packages were installed in $(HOST_DIR)/usr
(with e.g. the autotools' --prefix=$(HOST_DIR)/usr
). With Buildroot
2017.08, they are now installed directly in $(HOST_DIR)
.
在 Buildroot 2017.08 之前,主机软件包安装在 $(HOST_DIR)/usr
中(例如,autotools 的 --prefix=$(HOST_DIR)/usr
)。从 Buildroot 2017.08 开始,它们现在直接安装在 $(HOST_DIR)
中。
Whenever a package installs an executable that is linked with a library
in $(HOST_DIR)/lib
, it must have an RPATH pointing to that directory.
每当一个软件包安装一个与 $(HOST_DIR)/lib
中的库链接的可执行文件时,它必须有一个指向该目录的 RPATH。
An RPATH pointing to $(HOST_DIR)/usr/lib
is no longer accepted.
不再接受指向 $(HOST_DIR)/usr/lib
的 RPATH。
Before Buildroot 2023.11, the subversion download backend unconditionally
retrieved the external references (objects with an svn:externals
property). Starting with 2023.11, externals are no longer retrieved by
default; if you need them, set LIBFOO_SVN_EXTERNALS
to YES
. This
change implies that:
在 Buildroot 2023.11 之前,子版本下载后端无条件地检索外部引用(具有 svn:externals
属性的对象)。从 2023.11 开始,默认情况下不再检索外部引用;如果需要它们,请将 LIBFOO_SVN_EXTERNALS
设置为 YES
。这一变化意味着:
-br3
, so the hash
files must be updated appropriately.
-br3
,因此哈希文件必须适当更新。Before Buildroot 2023.11, it was possible (but undocumented and unused)
to apply architecture-specific patches, by prefixing the patch filename
with the architecture, e.g. 0001-some-changes.patch.arm
and such a
patch would only be applied for that architecture. With Buildroot 2023.11,
this is no longer supported, and such patches are no longer applied at
all.
在 Buildroot 2023.11 之前,可以(但未记录且未使用)通过在补丁文件名前加上架构来应用特定于架构的补丁,例如 0001-some-changes.patch.arm
,这样的补丁只会应用于该架构。从 Buildroot 2023.11 开始,不再支持这样做,这样的补丁将不再被应用。
If you still need per-architecture patches, then you may provide a
pre-patch hook that copies the patches applicable to the
configured architecture, e.g.:
如果您仍然需要特定于架构的补丁,则可以提供一个预补丁钩子,用于复制适用于配置架构的补丁,例如:
define LIBFOO_ARCH_PATCHES $(foreach p,$(wildcard $(LIBFOO_PKGDIR)/*.patch.$(ARCH)), \ cp -f $(p) $(patsubst %.$(ARCH),%,$(p)) ) endef LIBFOO_PRE_PATCH_HOOKS += LIBFOO_ARCH_PATCHES
Note that no package in Buildroot has architecture-specific patches, and
that such patches will most probably not be accepted.
请注意,Buildroot 中没有任何软件包具有特定于架构的补丁,并且这样的补丁很可能不会被接受。